留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性扰动广义NNV系统的孤立子渐近行波解

史娟荣 吴钦宽 莫嘉琪

史娟荣, 吴钦宽, 莫嘉琪. 非线性扰动广义NNV系统的孤立子渐近行波解[J]. 应用数学和力学, 2015, 36(9): 1003-1010. doi: 10.3879/j.issn.1000-0887.2015.09.011
引用本文: 史娟荣, 吴钦宽, 莫嘉琪. 非线性扰动广义NNV系统的孤立子渐近行波解[J]. 应用数学和力学, 2015, 36(9): 1003-1010. doi: 10.3879/j.issn.1000-0887.2015.09.011
SHI Juan-rong, WU Qin-kuan, MO Jia-qi. Asymptotic Travelling Wave Soliton Solutions for Nonlinear Disturbed Generalized NNV Systems[J]. Applied Mathematics and Mechanics, 2015, 36(9): 1003-1010. doi: 10.3879/j.issn.1000-0887.2015.09.011
Citation: SHI Juan-rong, WU Qin-kuan, MO Jia-qi. Asymptotic Travelling Wave Soliton Solutions for Nonlinear Disturbed Generalized NNV Systems[J]. Applied Mathematics and Mechanics, 2015, 36(9): 1003-1010. doi: 10.3879/j.issn.1000-0887.2015.09.011

非线性扰动广义NNV系统的孤立子渐近行波解

doi: 10.3879/j.issn.1000-0887.2015.09.011
基金项目: 国家自然科学基金(11202106)
详细信息
    作者简介:

    史娟荣(1981—), 女,安徽宣城人, 副教授, 硕士(E-mail: ahjdshjr@126.com);莫嘉琪(1937—),男,浙江德清人,教授(通讯作者. E-mail: mojiaqi@mail.ahnu.edu.cn).

  • 中图分类号: O175.29

Asymptotic Travelling Wave Soliton Solutions for Nonlinear Disturbed Generalized NNV Systems

Funds: The National Natural Science Foundation of China(11202106)
  • 摘要: 采用了一个简单而有效的技巧,研究一类非线性扰动广义NNV(Nizhnik-Novikov-Veselov)系统.首先用待定系数法得到一个相应典型系统的孤立子解.其次构造一个广义泛函式,并对它进行变分计算,利用变分原理求出对应的Lagrange乘子,并由此构造一个特殊的变分迭代关系式.然后依次求出原非线性扰动广义NNV系统的孤立子渐近行波解.最后通过举例,说明了使用该方法得到的近似解具有简单而有效的优点.
  • [1] McPhaden M J, Zhang D. Slowdown of the meridional overturning circulation in the upper Pacific Pcean[J].Nature,2002,415(6872): 603-608.
    [2] GU Dai-fang, Philander S G H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics[J].Science,1997,275(7): 805-807.
    [3] 马松华, 强继业, 方建平. (2+1)维Boiti-Leon-Pempinelli系统的混沌行为及孤立子间的相互作用[J]. 物理学报, 2007,56(2): 620-626.(MA Song-hua, QIANG Ji-ye, FANG Jian-ping. The interaction between solitons and chaotic behaviours of (2+1)-dimensional Boiti-Leon-Pempinelli system[J].Acta Physica Sinica,2007,56(2): 620-626.(in Chinese))
    [4] Loutsenko I. The variable coefficient Hele-Shaw problem, integrability and quadrature identities[J].Communications in Mathematical Physics,2006,268(2): 465-479.
    [5] Gedalin M. Low-frequency nonlinear stationary waves and fast shocks: hydrodynamical description[J].Physics of Plasmas,1998,5(1): 127-132.
    [6] Parkes E J. Some periodic and solitary travelling-wave solutions of the short-pulse equation[J].Chaos Solitons Fractals,2008,38(1): 154-159.
    [7] 潘留仙, 左伟明, 颜家壬. Landau-Ginzburg-Higgs方程的微扰理论[J]. 物理学报, 2005,54(1): 1-5.(PAN Liu-xian, ZUO Wei-ming, YAN Jia-ren. The theory of the perturbation for Landau-Ginzburg-Higgs equation[J].Acta Physica Sinica,2005,54(1): 1-5.(in Chinese))
    [8] 封国林, 戴新刚, 王爱慧, 丑纪范. 混沌系统中可预报性的研究[J]. 物理学报, 2001,50(4): 606-611.(FENG Guo-lin, DAI Xin-gang, WANG Ai-hui , CHOU Ji-fan. On the numerical predictability in the chaos system[J].Acta Physica Sinica,2001,50(4): 606-611.(in Chinese))
    [9] WENG Ming-liang. Solitary wave solutions for variant Boussinesq equations[J].Physics Letters A,1995, 199(3/4): 169-172.
    [10] 吴国将, 韩家骅, 史良马, 张苗. 一般变换下双Jacobi椭圆函数展开法及应用[J]. 物理学报, 2006,55(8): 3858-3863.(WU Guo-jiang, HAN Jia-hua, SHI Liang-ma, ZHANG Miao. Double Jacobian elliptic function expansion method under a general function transform and its applications[J].Acta Physica Sinica,2006,55(8): 3858-3863.(in Chinese))
    [11] 李向正, 李修勇, 赵丽英, 张金良. Gerdjikov-Ivanov方程的精确解[J]. 物理学报, 2008,57(4): 2031-2034.(LI Xiang-zheng, LI Xiu-yong, ZHAO Li-ying, ZHANG Jin-liang. Exact solutions of Gerdjikov-Ivanov equation[J].Acta Physica Sinica,2008,57(4): 2031-2034.(in Chinese))
    [12] 高亮, 徐伟, 唐亚宁, 申建伟. 一类广义Boussinesq方程和Boussinesq-Burgers方程新的显式精确解[J]. 物理学报, 2007,56(4): 1860-1869.(GAO Liang, XU Wei, TANG Ya-ning, SHEN Jian-wei. New explicit exact solutions of one type of generalized Boussinesq equations and the Boussinesq-Burgers equation[J].Acta Physica Sinica, 2007,56(4): 1860-1869.(in Chinese))
    [13] 马松华, 吴小红, 方建平, 郑春龙. (3+1)维Burgers系统的新精确解及其特殊孤立子结构[J]. 物理学报, 2008, 57(1): 11-17.(MA Song-hua, WU Xiao-hong, FANG Jian-ping, ZHENG Chun-long. New exact solutions and special soliton structures for the (3+1)-dimensional Burgers system[J].Acta Physica Sinica,2008, 57(1): 11-17.(in Chinese))
    [14] 李帮庆, 马玉兰. (G′/G)展开法和(2+1)维非对称Nizhnik-Novikov-Veselov系统的新精确解[J]. 物理学报, 2009,58(7): 4373-4378.(LI Bang-qing, MA Yu-lan.(G′/G) -expansion method and new exact solutions for (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov system[J].Acta Physica Sinica,2009,58(7): 4373-4378.(in Chinese))
    [15] 何吉欢. 工程和科学计算中的近似非线性分析方法[M]. 郑州: 河南科学技术出版社, 2002.(HE Ji-huan.Approximate Analytical Methods in Engineering and Sciences [M]. Zhengzhou: Henan Science and Technology Press, 2002.(in Chinese))
    [16] Hovhannisyan G, Vulanovic R. Stability inequalities for one-dimensional singular perturbation problems[J].Nonlinear Studies,2008,15(4): 297-322.
    [17] Barbu L, Cosma E. Elliptic regularization for the nonlinear heat equation[J].Journal of Mathematical Analysis and Applications,2009,351(1): 392-399.
    [18] Ramos M. On singular perturbation of superlinear elliptic systems[J].Journal of Mathematical Analysis and Applications,2009,352(1): 246-258.
    [19] MO Jia-qi. Singular perturbation for a class of nonlinear reaction diffusion systems[J].Science in China Ser A,1989,32(11): 1306-1315.
    [20] MO Jia-qi, LIN Wan-tao. Asymptotic solution for a class of sea-air oscillator model for El-Nino-southern oscillation[J].Chinese Physics B,2008,17(2): 370-372.
    [21] MO Jia-qi, LIN Wan-tao. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations[J].Journal of Systems Science and Complexity,2008,20(1): 119-128.
    [22] MO Jia-qi, LIN Yi-hua, LIN Wan-tao, CHEN Li-hua. Perturbed solving method for interdecadal sea-air oscillator model[J].Chinese Geographical Science,2012,22(1): 42-47.
    [23] MO Jia-qi. A variational iteration solving method for a class of generalized Boussinesq equation[J].Chinese Physics Letters,2009,26(6): 060202.
    [24] FENG Yihu, MO Jiaqi. Asymptotic solution for singularly perturbed fractional order differential equation[J]. Journal of Mathematics,2016,36(2): 239-245.
    [25] MO Jia-qi. Homotopiv mapping solving method for gain fluency of a laser pulse amplifier[J].Science in China Ser G,2009,52(7): 1007-1010.
    [26] MO Jia-qi, LIN Wan-tao, WANG Hui. Variational iteration solution of a sea-air oscillator model for the ENSO[J].Progress in Natural Science,2007,17(2): 230-232.
    [27] 史娟荣, 石兰芳, 莫嘉琪. 一类非线性强阻尼扰动发展方程的解[J]. 应用数学和力学, 2014,35(9): 1046-1054.(SHI Juan-rong, SHI Lan-fang, MO Jia-qi. The solutions for a class of nonlinear disturbed evolution equations[J].Applied Mathematics and Mechanics,2014,35(9): 1046-1054.(in Chinese))
    [28] 吴钦宽. 一类非线性方程激波解的Sinc-Galerkin方法[J]. 物理学报, 2006,55(4): 1562-1564.(WU Qin-kuan. The shock solution for a class of the nonlinear equations by the Sinc-Galerkin method[J].Acta Physica Sinica,2006,55(4): 1562-1564.(in Chinese))
    [29] ZHOU Xin-chun, SHI Lan-fang, HAN Xiang-lin, MO Jia-qi. Homotopic mapping solitary traveling wave solutions for the disturbed BKK mechanism physical model[J].Chinese Physics B,2014,23(9): 090204.
  • 加载中
计量
  • 文章访问数:  1236
  • HTML全文浏览量:  132
  • PDF下载量:  622
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-05
  • 修回日期:  2015-06-15
  • 刊出日期:  2015-09-15

目录

    /

    返回文章
    返回