留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流固耦合作用下狭窄颈动脉内非Newton血流分析

刘莹 殷艳飞 章德发 张智亮

刘莹, 殷艳飞, 章德发, 张智亮. 流固耦合作用下狭窄颈动脉内非Newton血流分析[J]. 应用数学和力学, 2015, 36(10): 1058-1066. doi: 10.3879/j.issn.1000-0887.2015.10.005
引用本文: 刘莹, 殷艳飞, 章德发, 张智亮. 流固耦合作用下狭窄颈动脉内非Newton血流分析[J]. 应用数学和力学, 2015, 36(10): 1058-1066. doi: 10.3879/j.issn.1000-0887.2015.10.005
LIU Ying, YIN Yan-fei, ZHANG De-fa, ZHANG Zhi-liang. Analysis of Non-Newtonian Blood Flow in Stenotic Carotid Artery Under Fluid-Structure Interaction[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1058-1066. doi: 10.3879/j.issn.1000-0887.2015.10.005
Citation: LIU Ying, YIN Yan-fei, ZHANG De-fa, ZHANG Zhi-liang. Analysis of Non-Newtonian Blood Flow in Stenotic Carotid Artery Under Fluid-Structure Interaction[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1058-1066. doi: 10.3879/j.issn.1000-0887.2015.10.005

流固耦合作用下狭窄颈动脉内非Newton血流分析

doi: 10.3879/j.issn.1000-0887.2015.10.005
基金项目: 国家自然科学基金(51165031)
详细信息
    作者简介:

    刘莹(1957—),女,江西吉水人,教授,博士,博士生导师(通讯作者. E-mail: lyingncu@163.com).

  • 中图分类号: Q66;O368

Analysis of Non-Newtonian Blood Flow in Stenotic Carotid Artery Under Fluid-Structure Interaction

Funds: The National Natural Science Foundation of China(51165031)
  • 摘要: 采用计算流体力学方法分别对6种狭窄率的颈动脉内非Newton瞬态血流进行流固耦合数值分析.研究了狭窄率对颈动脉内血流动力学分布的影响,以探索狭窄率与颈动脉内粥样斑块形成的关系.结果表明,狭窄率不同的颈动脉内血流动力学分布特性明显不同,与0.05,0.1,0.2,0.3和04这5种狭窄率的颈动脉内血流动力学分布特性相比,狭窄率为0.5的颈动脉内血流动力学分布独特,狭窄部位附近区域存在面积较大的低速涡流区;复杂血流作用下,该区域分布低壁面压力,异常壁面切应力,较大管壁形变量和von Mises应力;血流速度低使血液中脂质、纤维蛋白等大分子易沉积,低壁面压力引起的明显“负压”效应引发脑部供血障碍,异常壁面切应力作用下粥样斑块易破裂与脱落,并堵塞脑血管,较大的von Mises应力易引起应力集中,导致血管破裂,为脑卒中发生提供有利条件.因此,狭窄率越大对颈动脉内血流动力学分布的影响越显著,促进颈动脉粥样斑块形成与发展,并引发缺血性脑卒中.
  • [1] 王桦, 赵晟珣, 曾尔亢, 马春薇, 王家瑜, 段凌. 中国人口老龄化社会发展与应对策略[J]. 中国社会医学杂志, 2014,32(2): 75-77.(WANG Hua, ZHAO Sheng-xun, ZENG Er-kang, MA Chun-wei, WANG Jia-yu, DUAN Ling. The social development and the coping strategies for China’s aging population[J]. Chinese Journal of Social Medicine,2014,32(2): 75-77.(in Chinese))
    [2] LIU Li-ping, Wang D, Wong K S L, WANG Yong-jun. Stroke and stroke care in China huge burden, significant workload, and a national priority[J]. Stroke,2011,42(12): 3651-3654.
    [3] 曹琼, 裴毓华, 倪超超. 颈动脉粥样硬化斑块的稳定性及数值仿真研究进展[J]. 固体力学学报, 2014,35(1): 69-72.(CAO Qiong, PEI YU-hua, NI Chao-chao. Progress in the study of stability and numerical simulation of carotid atherosclerotic plaque[J]. Chinese Journal of Solid Mechanics,2014,35(1): 69-72.(in Chinese))
    [4] Hogberg D, Kragsterman B, Bjrck M, Tjrnstrm J, Wanhainen A. Carotid artery atherosclerosis among 65-year-old Swedish men—a population-based screening study[J]. European Journal of Vascular and Endovascular Surgery,2014,48(1): 5-10.
    [5] 马瑞艳, 刘赵淼, 张谭, 叶红玲, 史艺. T型分叉血管中血液流动对动脉血栓形成的影响[J]. 医用生物力学, 2009,24(2): 98-106.(MA Rui-yan, LIU Zhao-miao, ZHANG Tan, YE Hong-ling, SHI Yi. Influence on thrombus formation by blood flow in T-bifurcation of artery[J]. Journal of Medical Biomechanics,2009,24(2): 98-106.(in Chinese))
    [6] 吕绍茂, 钟华, 陈丽君, 段少银. 构建颈内动脉瘤双向流固耦合模型的血流模拟[J]. 中国组织工程研究, 2014,18(2): 218-224.(Lū Shao-mao, ZHONG Hua, CHEN Li-jun, DUAN Shao-yin. Blood flow simulation of internal carotid artery aneurysm using two-way flow-solid coupling method[J]. Chinese Journal of Tissue Engineering Research,2014,18(2): 218-224.(in Chinese))
    [7] 顾媛, 郦鸣阳, 沈力行, 俞洪流, 丁皓, 赵改平. 狭窄动脉流固耦合模型Ansys/CFX数值的有限元分析[J]. 中国组织工程研究与临床康复, 2008,12(52): 10293-10296.(GU Yuan, LI Ming-yang, SHEN Li-xing, YU Hong-liu, DING Hao, ZHAO Gai-ping. Finite element analysis of stenosed artery-blood coupling model in Ansys/CFX[J]. Chinese Journal of Tissue Engineering Research,2008,12(52): 10293-10296.(in Chinese))
    [8] Jozwik K, Obidowski D. Numerical simulations of the blood flow through vertebral arteries[J]. Journal of Biomechanics,2010,43(2): 177-185.
    [9] 杨金有, 徐跃平, 俞航, 刘静, 单晶心, 郭金明, 洪洋. 人体主动脉弓内非牛顿血液流动数值模拟分析[J]. 中国医学物理学杂志, 2011,28(1): 2422-2425.(YANG Jin-you, XU Yue-ping, YU Hang, LIU Jing, SHAN Jing-xin, GUO Jin-ming, HONG Yang. Numerical simulation the non-Newtonian blood flow in human aortic arch[J]. Chinese Journal of Medical Physics,2011,28(1): 2422-2425.(in Chinese))
    [10] Morales H G, Larrabide I, Geers A J, Aguilar M L, Frangi A F. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms[J]. Journal of Biomechanics,2013,46(13): 2158-2164.
    [11] Matos H M, Oliveira P J. Steady and unsteady non-Newtonian inelastic flows in a planar T-junction[J]. International Journal of Heat and Fluid Flow,2013,39: 102-126.
    [12] Chatziprodromou I, Tricoli A, Poulikakos D, Ventikos Y. Haemodynamics and wall remodelling of a growing cerebral aneurysm: a computational model[J]. Journal of Biomechanics,2007,40(2): 412-426.
  • 加载中
计量
  • 文章访问数:  1538
  • HTML全文浏览量:  145
  • PDF下载量:  922
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-07
  • 修回日期:  2015-06-16
  • 刊出日期:  2015-10-15

目录

    /

    返回文章
    返回