留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Riccati-Bernoulli辅助常微分方程的Davey-Stewartson方程的行波解

杨小锋 邓子辰 魏乙

杨小锋, 邓子辰, 魏乙. 基于Riccati-Bernoulli辅助常微分方程的Davey-Stewartson方程的行波解[J]. 应用数学和力学, 2015, 36(10): 1067-1075. doi: 10.3879/j.issn.1000-0887.2015.10.006
引用本文: 杨小锋, 邓子辰, 魏乙. 基于Riccati-Bernoulli辅助常微分方程的Davey-Stewartson方程的行波解[J]. 应用数学和力学, 2015, 36(10): 1067-1075. doi: 10.3879/j.issn.1000-0887.2015.10.006
YANG Xiao-feng, DENG Zi-chen, WEI Yi. Traveling Wave Solutions to the Davey-Stewartson Equation With the Riccati-Bernoulli Sub-ODE Method[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1067-1075. doi: 10.3879/j.issn.1000-0887.2015.10.006
Citation: YANG Xiao-feng, DENG Zi-chen, WEI Yi. Traveling Wave Solutions to the Davey-Stewartson Equation With the Riccati-Bernoulli Sub-ODE Method[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1067-1075. doi: 10.3879/j.issn.1000-0887.2015.10.006

基于Riccati-Bernoulli辅助常微分方程的Davey-Stewartson方程的行波解

doi: 10.3879/j.issn.1000-0887.2015.10.006
基金项目: 高校博士点基金(20126102110023);中央高校基本科研业务费专项资金(3102014JCQ01035)
详细信息
    作者简介:

    杨小锋(1978—), 男, 陕西人, 博士生(E-mail: yangxiaofeng@nwsuaf.edu.cn);邓子辰(1964—), 男, 辽宁人, 教授, 博士生导师(通讯作者. E-mail: dweifan@nwpu.edu.cn);魏乙(1980—), 男, 山东人, 博士生(E-mail: weiyiwy@126.com).

  • 中图分类号: O175.2

Traveling Wave Solutions to the Davey-Stewartson Equation With the Riccati-Bernoulli Sub-ODE Method

  • 摘要: Riccati-Bernoulli辅助常微分方程方法可以用来构造非线性偏微分方程的行波解.利用行波变换,将非线性偏微分方程化为非线性常微分方程, 再利用Riccati-Bernoulli方程将非线性常微分方程化为非线性代数方程组, 求解非线性代数方程组就能直接得到非线性偏微分方程的行波解.对Davey-Stewartson方程应用这种方法, 得到了该方程的精确行波解.同时也得到了该方程的一个Backlund变换.所得结果与首次积分法的结果作了比较.Riccati-Bernoulli辅助常微分方程方法是一种简单、有效地求解非线性偏微分方程精确解的方法.
  • [1] Ablowitz M J, Clarkson P A.Solitons, Nonlinear Evolution Equations and Inverse Scattering [M]. Cambridge: Cambridge University Press, 1991.
    [2] Ablowitz M J, Segur H.Solitons and Scattering Transformation [M]. Philadelphia: SIAM Press, 1981.
    [3] Rogers C, Schief W K.Backlund and Darboux Transformation Geometry and Modern Applications in Solitons Theory [M]. Cambridge: Cambridge University Press, 2002.
    [4] Gu C H, Hu H S. A unified explicit form of Bcklund transformations for generalized hierarchies of KdV equations[J].Letters in Mathematical Physics,1986,11(4): 325-335.
    [5] Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[J].Phys Rev Lett,1971,27(18): 1192-1194.
    [6] Hirota R, Ito M. Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons[J].Journal of the Physical Society of Japan,1972,33(5): 1456-1458.
    [7] Hirota R.The Direct Method in Soliton Theory [M]. Cambridge: Cambridge University Press, 2004.
    [8] WANG Ming-liang. Solitary wave solutions for variant Boussinesq equations[J].Physics Letters A,1995,199(3/4): 169-172.
    [9] Wang M L, Zhou Y B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J].Physics Letters A,1996,216(1): 67-75.
    [10] BAI Cheng-lin. Extended homogeneous balance method and Lax pairs, Bcklund transformation[J].Communications in Theoretical Physics,2002,37(6): 645-648.
    [11] Taghizadeh N, Mirzazadeh M, Filiz T. The first-integral method applied to the Eckhaus equation[J].Applied Mathematics Letters,2012,25(5): 798-802.
    [12] Lu B. The first integral method for some time fractional differential equations[J].Journal of Mathematical Analysis and Applications,2012,395(2):684-693.
    [13] WANG Ming-liang, LI Xiang-zheng, ZHANG Jin-liang. The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J].Physics Letters A,2008,372(4): 417-423.
    [14] ZHANG Hui-qun. New application of the (G′/G)-expansion method[J]. Communications in Nonlinear Science and Numerical Simulation,2009,14(8): 3220-3225.
    [15] Wazwaz A M. The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations[J].Applied Mathematics &Computation,2005,167(2): 1196-1210.
    [16] YAN Zhen-ya. Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey-Stewartson-type equation via a new method[J].Chaos, Solitons & Fractals,2003,18(2): 299-309.
    [17] McConnell M, Fokas A S, Pelloni B. Localised coherent solutions of the DSI and DSII equations—a numerical study[J].Mathematics and Computers in Simulation,2005,69(5/6): 424-438.
    [18] Davey A, Stewartson K. On three-dimensional packets of surfaces waves[J].Proceedings of the Royal Society of London, Series A,1974,338: 101-110.
    [19] Djordjevic V D, Redekopp L G. On two-dimensional packets of capillary-gravity wave[J].Journal of Fluid Mechanics,1977,79(4): 703-714.
    [20] Novikov S, Manakov S V, Pitaevskii L P, Zakharov V E.Theory of Solitons, the Inverse Scattering Method [M]. New York: Consultants Bureau Press, 1984.
    [21] Zakharov V E.The Inverse Scattering Method, in Soliton [M]. Heidelberg: Springer Press, 1980.
    [22] Zedan H A, Tantawy S S. Solutions of Davey-Stewartson equations by homotopy perturbation method[J].Computational Mathematics and Mathematical Physics,2009,49(8): 1382-1388.
    [23] Ghidaglia J M, Saut J C. On the initial value problem for the Davey-Stewartson systems[J].Nonlinearity,1990,3(2): 475-506.
    [24] Jafari H, Sooraki A, Talebi Y, Biswas A. The first integral method and traveling wave solutions to Davey-Stewartson equation[J].Nonlinear Analysis: Modelling and Control,2012,17(2): 182-193.
    [25] 张金良, 任东锋, 王明亮, 方宗德. Davey-Stewartson Ⅰ的周期波解[J]. 数学物理学报, 2005,25(2): 213-219.(ZHANG Jin-liang, REN Dong-feng, WANG Min-liang, FANG Zhong-de. The periodic wave solutions for the Davey-Stewartson Ⅰ[J].Acta Mathematica Scientia,2005,25(2): 213-219.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1669
  • HTML全文浏览量:  158
  • PDF下载量:  864
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-24
  • 修回日期:  2015-07-23
  • 刊出日期:  2015-10-15

目录

    /

    返回文章
    返回