[1] |
Kutateladze S S. Convex ε-programming[J].Soviet Mathematics Doklady,1979,20: 390-393.
|
[2] |
夏远梅, 张万里, 赵克全. ε-真有效解的非线性标量化[J]. 重庆师范大学学报(自然科学版), 2015,32(1): 12-15.(XIA Yuan-mei, ZHANG Wang-li, ZHAO Ke-quan. Nonlinear scalarization of ε-properly efficient solutions[J].Journal of Chongqing Normal University (Natural Science),2015,32(1): 12-15.(in Chinese))
|
[3] |
RONG Wei-dong, MA Yi. Connectedness of ε-super efficient solution set of vector optimization problems with set-valued maps[J].Or Transactions,2000,4(4): 21-32.
|
[4] |
Eichfelder G.Adaptive Scalarization Methods in Multiobjective Optimization [M]. Heidelberg, Berlin: Springer-Verlag, 2008.
|
[5] |
Jahn J.Vector Optimization: Theory, Applications, and Extensions [M]. Berlin: Springer, 2011.
|
[6] |
Soleimani-Damaneh M. An optimization modelling for string selection in molecular biology using Pareto optimality[J].Applied Mathematical Modelling,2011,35(8): 3887-3892.
|
[7] |
Soleimani-Damaneh M. On some multiobjective optimization problems arising in biology[J].International Journal of Computer Mathematics,2011,88(6): 1103-1119.
|
[8] |
Engau A, Wiecek M M. Generating ε-efficient solutions in multiobjective programming[J].European Journal of Operational Research,2007,177(3): 1566-1579.
|
[9] |
Khoshkhabar-Amiranloo S, Soleimani-Damaneh M. Scalarization of set-valued optimization problems and variational inequalities in topological vector spaces[J].Nonlinear Analysis,2012,75(3): 1429-1440.
|
[10] |
Son T Q, Strodiot J J, Nguyen V H. ε-optimality and ε-Lagrangian duality for a nonconvex programming problem with an infinite number of constraints[J].Journal of Optimization Theory and Applications,2009,141(2): 389-409.
|
[11] |
Hiriart-Urruty J B. New concepts in nondifferentiable programming[J].Mémoires de la Société Mathématique de France,1979,60: 57-85.
|
[12] |
Hiriart-Urruty J B. Tangent cones, generalized gradients and mathematical programming in Banach spaces[J].Mathematics of Operations Research,1979,4(1): 79-97.
|
[13] |
Gerth C, Weidner P. Nonconvex separation theorems and some applications in vector optimization[J].Journal of Optimization Theory and Applications,1990,67(2): 297-320.
|
[14] |
Gpfert A, Riahi H, Tammer C, Zalinescu C.Variational Methods in Partially Ordered Spaces [M]. New York: Springer-Verlag, 2003.
|
[15] |
Zaffaroni A. Degrees of efficiency and degrees of minimality[J].SIAM Journal on Control and Optimization,2003,42(3): 1071-1086.
|
[16] |
Loridan P. -solutions in vector minimization problems[J].Journal of Optimization Theory and Applications,1984,43(2): 265-276.
|
[17] |
White D J. Epsilon effieiency[J].Journal of Optimization Theory and Applications,1986,49(2): 319-337.
|
[18] |
Gutiérrez C, Jiménez B, Novo V. A unified approach and optimality conditions for approximate solutions of vector optimization problems[J].SIAM Journal on Optimization,2006,17(3): 688-710.
|
[19] |
Helbig S, Pateva D. On several concepts for ε-efficiency[J].Operations Research Spektrum,1994,16(3): 179-186.
|
[20] |
Gutiérrez C, Jiménez B, Novo V. Optimality conditions via scalarization for a new ε-efficiency concept in vector optimization problems[J].European Journal of Operational Research,2010,201(1): 11-22.
|
[21] |
Ha T X D. The Ekeland variational principle for Henig proper minimizers and super minimizers[J].Journal of Mathematical Analysis and Applications,2010,364(1): 156-170.
|
[22] |
Durea M, Dutta J, Tammer C. Lagrange multipliers for ε-Pareto solutions in vector optimization with nonsolid cones in Banach spaces[J].Journal of Optimization Theory and Applications,2010,145(1): 196-211.
|
[23] |
Gao Y, Yang X M, Teo K L. Optimality conditions for approximate solutions of vector optimization problems[J].Journal of Industrial and Management Optimization,2011,7(2): 483-496.
|