[1] |
温朝晖, 莫嘉琪. 一类流行性传染病生态模型的摄动解[J]. 武汉大学学报(理学版), 2011,57(2): 105-108.(WEN Zhao-hui, MO Jia-qi. Perturbed solution of a class of epidemic contagion ecological model[J]. Journal of Wuhan University (Natural Science Edition),2011,57(2): 105-108.(in Chinese))
|
[2] |
陈兰荪, 孟新柱, 焦建军. 生物动力学[M]. 北京: 科学出版社, 2009: 252-340.(CHEN Lan-sun, MENG Xin-zhu, JIAO Jian-jun. Biological Dynamics [M]. Beijing: Science Press, 2009: 252-340.(in Chinese))
|
[3] |
RUAN Shi-gui, WANG Wen-di. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. Journal of Differential Equations,2003,188(1): 135-163.
|
[4] |
Oliveira R D S, Rezende A C. Global phase portraits of a SIS model[J]. Applied Mathematics and Computation,2013,219(9): 4924-4930.
|
[5] |
GUO Li-na, PEI Yong-zhen, LIU Yuan. An infectious disease model with a time delay in loss of vaccine immunity and vertical transmission[J]. Journal of Biomathematics,2013,28(3): 385-389.
|
[6] |
刘玉英, 肖燕妮. 一类受媒体影响的传染病模型的研究[J]. 应用数学和力学, 2013,34(4): 399-407.(LIU Yu-yan, XIAO Yan-ni. An epidemic model with saturated media/psychological impact[J]. Applied Mathematics and Mechanics,2013,34(4): 399-407.(in Chinese))
|
[7] |
宫兆刚, 杨柳, 李浏兰. 具有常数输入率的SIRS传染病模型的稳定性分析[J]. 应用数学, 2013,26(3): 477-481.(GONG Zhao-gang, YANG Liu, LI Liu-lan. Global stability of an SIRS epidemic model with constant removal rate[J]. Mathematica Applicata,2013,26(3): 477-481.(in Chinese))
|
[8] |
王拉娣, 李建全. 一类带有非线性传染率的SEIS传染病模型的定性分析[J]. 应用数学和力学, 2006,27(5): 591-596.(WANG La-di, LI Jian-quan. Qualitative analysis of an SEIS epidemic model with nonlinear incidence rate[J]. Applied Mathematics and Mechanics,2006,27(5): 591-596.(in Chinese))
|
[9] |
杨洪, 魏俊杰. 一类带有非线性接触率的SIR传染病模型的稳定性[J]. 高校应用数学学报, 2014,29(1): 11-16.(YANG Hong, WEI Jun-jie. Stability of SIR epidemical model with a class of nonlinear incidence rates[J]. Applied Mathematics—A Journal of Chinese Universities,2014,29(1): 11-16.(in Chinese))
|
[10] |
杨亚莉, 李建全, 刘万萌, 唐三一. 一类具有分布时滞和非线性发生率的媒介传染病模型的全局稳定性[J]. 应用数学和力学, 2013,34(12): 1291-1299.(YANG Ya-li, LI Jian-quan, LIU Wan-meng, TANG San-yi. Global stability of a vector-borne epidemic model with distributed delay and nonlinear incidence[J]. Applied Mathematics and Mechanics,2013,34(12): 1291-1299.(in Chinese))
|
[11] |
周艳丽, 张卫国. 一类具有非单调传染率的SEIRS时滞传染病模型的全局稳定性[J]. 上海理工大学学报, 2014,36(2): 103-109.(ZHOU Yan-li, ZHANG Wei-guo. Global stability of a delayed SEIRS epidemic model with non-monotone incidence rate[J]. Journal of University of Shanghai for Science and Technology,2014,36(2): 103-109.(in Chinese))
|
[12] |
HUANG Gang, Takeuchi Y, MA Wan-biao, WEI Dai-jun. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate[J]. Bulletin of Mathematical Biology,2010,72(5): 1192-1207.
|
[13] |
Enatsu Y, Nakata Y, Muroya Y. Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model[J]. Nonlinear Analysis: Real World Applications,2012,13(5): 2120-2133.
|
[14] |
XU Rui, MA Zhi-en. Global stability of a delayed SEIRS epidemic model with saturation incidence rate[J]. Nonlinear Dynamics,2010,61(1): 229-239.
|
[15] |
SONG Mei, LIU Guang-chen, GUO Hong-xia. The local asymptotic stability of an SIR epidemic model with nonlinear incidence rate and time delay[J]. Journal of Biomathematics,2011,26(2): 255-262.
|
[16] |
李鸣明, 刘贤宁, 吴凡. 一个具有非线性发生率的时滞SIR传染病模型的稳定性[J]. 西南大学学报(自然科学版), 2014,36(5): 61-66.(LI Ming-ming, LIU Xian-ning, WU Fan. The stability of a delayed SIR epidemic model with nonlinear incidence rate[J]. Journal of Southwest University(Natural Science Edition),2014,36(5): 61-66.(in Chinese))
|
[17] |
MA Zhi-en, ZHOU Yi-cang, WU Jian-hong. Modeling and Dynamics of Infectious Diseases[M]. Beijing: Higher Education Press, 2009: 1-35, 289-314.
|
[18] |
YANG Kuang. Delay Differential Equations With Applications in Population Dynamics [M]. San Diego: Academic Press, 1993.
|