留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂介质中扩散和耗散行为的分数阶导数唯象建模

庞国飞 陈文 张晓棣 孙洪广

庞国飞, 陈文, 张晓棣, 孙洪广. 复杂介质中扩散和耗散行为的分数阶导数唯象建模[J]. 应用数学和力学, 2015, 36(11): 1117-1134. doi: 10.3879/j.issn.1000-0887.2015.11.001
引用本文: 庞国飞, 陈文, 张晓棣, 孙洪广. 复杂介质中扩散和耗散行为的分数阶导数唯象建模[J]. 应用数学和力学, 2015, 36(11): 1117-1134. doi: 10.3879/j.issn.1000-0887.2015.11.001
PANG Guo-fei, CHEN Wen, ZHANG Xiao-di, SUN Hong-guang. Fractional Differential Phenomenological Modeling for Diffusion and Dissipation Behaviors of Complex Media[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1117-1134. doi: 10.3879/j.issn.1000-0887.2015.11.001
Citation: PANG Guo-fei, CHEN Wen, ZHANG Xiao-di, SUN Hong-guang. Fractional Differential Phenomenological Modeling for Diffusion and Dissipation Behaviors of Complex Media[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1117-1134. doi: 10.3879/j.issn.1000-0887.2015.11.001

复杂介质中扩散和耗散行为的分数阶导数唯象建模

doi: 10.3879/j.issn.1000-0887.2015.11.001
基金项目: 国家自然科学基金(面上项目)(11372097);国家杰出青年科学基金(11125208);111引智计划(B12032)
详细信息
    作者简介:

    庞国飞(1987—),男,四川南充人,博士生(E-mail: guofeipang_1987@hhu.edu.cn);陈文(1967—),男,福州人,教授,博士,博士生导师 (通讯作者. E-mail: chenwen@hhu.edu.cn);张晓棣(1985—),男,山东青岛人,工程师,博士;孙洪广(1982—),男,山东聊城人,教授,博士,博士生导师.

  • 中图分类号: O39;O352;O371;O175.2

Fractional Differential Phenomenological Modeling for Diffusion and Dissipation Behaviors of Complex Media

Funds: The National Natural Science Foundation of China(General Program)(11372097);The National Science Fund for Distinguished Young Scholars of China(11125208)
  • 摘要: 复杂介质一般是多相混合物.与普通固体、液体和气体相比,其力学行为具有明显的记忆、路径依赖性特征,难以用一般的经典力学模型来描述,因而显得反常.从数学力学建模上看,整数阶导数的局部极限定义不适合描述这样的非局部力学行为.分数阶导数实质上是微分-积分算子,能精确地刻画力学行为的全局相关特征.而且分数阶模型具有明确的统计物理解释.20世纪末至今,复杂介质反常力学行为的分数阶导数模型由于具有参数少,且参数的物理意义明确等突出优点,开始引起广泛关注.该文从唯象建模的角度,综述了分数阶导数和分形导数在复杂介质的反常扩散和频率依赖能量耗散建模中的应用与发展.
  • [1] SUN Hong-guang, ZHANG Yong, CHEN Wen, Reeves D M. Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media[J].Journal of Contaminant Hydrology,2014,157(3): 47-58.
    [2] Magin R L, Abdullah O, Baleanu D, Zhou X J. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation[J].Journal of Magnetic Resonance,2008,190(2): 255-270.
    [3] GAO Qing, Srinivasan G, Magin R L, Zhou X J. Anomalous diffusion measured by a twice-refocused spin echo pulse sequence: analysis using fractional order calculus[J].Journal of Magnetic Resonance Imaging,2011,33(5): 1177-1183.
    [4] Milovanov A V, Rypdal K, Rasmussen J J. Stretched exponential relaxation and ac universality in disordered dielectrics[J].Physical Review B,2007,76(10): 104201.
    [5] Uchaikin V, Sibatov R.Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics, and Nanosystems[M]. Hackensack, New Jersey: World Scientific, 2013.
    [6] 陈文,孙洪广,李西成,叶霖娟,胡帅,张晓棣,成亮. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社, 2010: 245-251.(CHEN Wen, SUN Hong-guang, LI Xi-cheng, YE Lin-juan, HU Shuai, ZHANG Xiao-di, CHENG Liang.Fractional Derivative Modeling in Mechanical and Engineering Problems.Beijing: Science Press, 2010: 245-251.(in Chinese))
    [7] Magin R L, Lngo C, Colon-Perez L, Triplett W, Mareci T H. Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy[J].Microporous and Mesoporous Materials,2013,178(18): 39-43.
    [8] Zaslasvsky G M. Chaos, fractional kinetics, and anomalous transport[J].Physics Reports—Review Section of Physics Letters,2002,371(6): 461-580.
    [9] Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J].Physics Reports—Review Section of Physics Letters,2000,339(1): 1-77.
    [10] CHEN Wen. Time-space fabric underlying anomalous diffusion[J].Chaos, Solitons and Fractals,2005,28(4): 923-929.
    [11] CHEN Wen, SUN Hong-guang, ZHANG Xiao-di, Koroak D. Anomalous diffusion modeling by fractal and fractional derivatives[J].Computers & Mathematics With Applications,2010,59(5): 1754-1758.
    [12] Mainardi F.Fractional Calculus and Waves in Linear Viscoelasticity.London: Imperial College Press, 2010.
    [13] Samko S G, Kilbas A A, Marichev O I.Fractional Integrals and Derivatives: Theory and Applications.London: Gordon and Breach Science Publishers, 1993.
    [14] Park H W, Choe J, Kang J M. Pressure behavior of transport in fractal porous media using a fractional calculus approach[J].Energy Sources,2000,22(10): 881-890.
    [15] Fomin S A, Chugunov V A, Hashida T. Non-Fickian mass transport in fractured porous media[J].Advances in Water Resources,2011,34(2): 205-214.
    [16] Shlesinger M F, West B J, Klafter J. Lévy dynamics of enhanced diffusion: application to turbulence[J].Physical Review Letters,1987,58(11): 1100-1103.
    [17] Brockmann D. Money circulation science-fractional dynamics in human mobility[C]// Anomalous Transport: Foundations and Applications.Berlin: Wiley-VCH, 2008: 459-483.
    [18] Hilfer R, ed.Applications of Fractional Calculus in Physics [C]. Singapore: World Scientific, 2000.
    [19] Sokolov I M, Klafter J, Blumen A. Fractional kinetics[J].Physics Today, 2002,55(11): 48-55.
    [20] Benson D A, Meerschaert M M, Revielle J. Fractional calculus in hydrologic modeling: a numerical perspective[J].Advances in Water Resources,2013,51(1): 479-497.
    [21] Magin R L. Fractional calculus in bioengineering—part 1[J].Critical ReviewsTM in Biomedical Engineering,2004,32(1): 1-104.
    [22] Magin R L. Fractional calculus in bioengineering—part 2[J].Critical ReviewsTM in Biomedical Engineering,2004,32(2): 105-193.
    [23] Magin R L. Fractional calculus in bioengineering—part 3[J].Critical ReviewsTM in Biomedical Engineering,2004,32(3/4): 195-377.
    [24] Atanackovic T M, Pilipovic S, Stankovic B, Zorica D.Fractional Calculus With Applications in Mechanics: Vibrations and Diffusion Processes.USA: John Wiley & Sons Inc, 2014.
    [25] Atanackovic T M, Pilipovic S, Stankovic B, Zorica D.Fractional Calculus With Applications in Mechanics: Wave Propagation, Impact and Variational Principles .USA: John Wiley & Sons Inc, 2014.
    [26] Kimmich R, Fatkullin N, Kehr M, LI Yu-jie. Anomalous molecular displacement laws in porous media and polymers probed by nuclear magnetic resonance techniques[C]// Anomalous Transport: Foundations and Applications.Berlin: Wiley-VCH, 2008: 485-518.
    [27] Fogedby H C. Lévy flights in random environments[J].Physical Review Letters,1994,73(19): 2517-2520.
    [28] Huges B D. Random Walks and Random Environments, Volume 〖STBX〗1.Oxford: Oxford University Press, 1995.
    [29] Magin R L, LI Wei-guo, Velasco M P, Trujillo J, Reiter D A, Morgenstern A, Spencer R G. Anomalous NMR relaxation in cartilage matrix components and native cartilage: fractional-order models[J]. Journal of Magnetic Resonance,2011,210(2): 184-191.
    [30] Solomon T H, Weeks E R, Swinney H L. Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow[J].Physical Review Letters,1993,71(24): 3975-3978.
    [31] Caputo M. Models of flux in porous media with memory[J].Water Resources Research,2000,36(3): 693-705.
    [32] Caputo M, Plastino W. Diffusion in porous layers with memory[J].Geophyscial Journal International,2004,158(1): 385-396.
    [33] Espinosa-Paredes G, Morales-Sandoval J B, Vázquez-Rodríguez R, Espinosa-Martiez E G. Constitutive laws for the neutron density current[J].Annals of Nuclear Energy,2008,35(10): 1963-1967.
    [34] Benson D A, Wheatcraft S W, Meerschaert M M. Application of a fractional advection-dispersion equation[J].Water Resources Research,2000,36(6): 1403-1412.
    [35] Benson D A, Wheatcraft S W, Meerschaert M M. The fractional-order governing equation of Lévy motion[J].Water Resources Research,2000,36(6): 1413-1423.
    [36] Povstenko Y Z. Fractional heat conduction equation and associated thermal stress[J].Journal of Thermal Stresses,2004,28(1): 83-102.
    [37] Povstenko Y Z. Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation[J].International Journal of Solids and Structures,2007,44(7/8): 2324-2348.
    [38] Mongioví M S, Zingales M. A non-local model of thermal energy transport: the fractional temperature equation[J].International Journal of Heat and Mass Transfer,2013,67(12): 593-601.
    [39] Zingales M. Fractional-order theory of heat transport in rigid bodies[J].Communications in Nonlinear Science and Numerical Simulations,2014,19(11): 3938-3953.
    [40] Bobaru F, Duangpanya M. The peridynamic formulation for transient heat conduction[J].International Journal of Heat and Mass Transfer,2010,53(19/20): 4047-4059.
    [41] Paola M D, Zingales M. Long-range cohesive interactions of non-local continuum faced by fractional calculus[J].International Journal of Solids and Structures,2008,45(21): 5642-5659.
    [42] Carpinteri A, Cornetti P, Sapora A. Nonlocal elasticity: an approach based on fractional calculus[J].Meccanica,2014,49(11): 2551-2569.
    [43] Morales-Casique E, Neuman S P, Guadagnini A. Non-local and localized analyses of non-reactive solute transport in bounded randomly heterogeneous porous media: theoretical framework[J].Advances in Water Resources,2006,29(8): 1238-1255.
    [44] Benson D A. The fractional advection-dispersion equation: development and application[D]. PhD Thesis. Reno: University of Nevada, 1998.
    [45] Navaneethakrishnan R P. Stream transient storage modeling based on fractional-in-space dispersion[D]. PhD Thesis. Michigan: Michigan State University, 2007.
    [46] Meerschaert M M, Benson D A, Bumer B. Multidimensional advection and fractional dispersion[J].Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics,1999,59(5): 5026-5028.
    [47] Meerschaert M M, Benson D A,Bumer B. Operator Lévy motion and multiscaling anomalous diffusion[J]. Physical Review E,2001,63(2): 142.
    [48] Schumer R, Benson D A, Meerschaert M M, Baeumer B. Multiscaling fractional advection-dispersion equations and their solutions[J].Water Resources Research,2003,39(1): 1022.
    [49] Benson D A, Tadjeran C, Meerschaert M M, Farnham I, Pohll G. Radial fractional-order dispersion through fractured rock[J].Water Resources Research,2004,40(12): 87.
    [50] SUN Hong-guang, CHEN Wen, CHEN Yang-quan. Variable-order fractional differential operators in anomalous diffusion modeling[J].Physica A: Statistical Mechanics and Its Applications,2009,388(21): 4586-4592.
    [51] SUN Hong-guang, CHEN Wen, SHENG Hu, CHEN Yang-quan. On mean square displacement behaviors of anomalous diffusions with variable and random orders[J].Physics Letters A,2010,374(7): 906-910.
    [52] CHEN Dong, SUN Hong-guang, ZHANG Yong. Fractional dispersion equation for sediment suspension[J].Journal of Hydrology,2013,491(1): 13-22.
    [53] Podlubny I.Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications.USA: Academic Press, 1999: 74.
    [54] Eringen A C. Linear theory of nonlocal elasticity and dispersion of plane waves[J].International Journal of Engineering Science,1972,10(5): 425-435.
    [55] Eringen A C, Speziale C G, Kim B S. Crack-tip problem in non-local elasticity[J].Journal of the Mechanics and Physics of Solids,1977,25(5): 339-355.
    [56] Klages R, Radons G, Sokolov I M, ed.Anomalous Transport: Foundations and Applications[C]. Berlin: Wiley-VCH, 2008.
    [57] Zaslavsky G M.Hamiltonian Chaos & Fractional Dynamics.New York: Oxford University Press, 2008.
    [58] 徐明瑜, 谭文长. 中间过程、 临界现象——分数阶算子理论、 方法、 进展及其在现代力学中的应用[J]. 中国科学 G辑: 物理学 力学 天文学, 2006,36(3): 225-238.(XU Ming-yu,TAN Wen-chang. Intermediate process and critical phenomenon—theory, method, and advances of fractional operators and its applications in modern mechanics[J].Science in China Series G: Physics, Mechanics & Astronomy,2006,36(3): 225-238.(in Chinese))
    [59] Mandelbrot B B.The Fractal Geometry of Nature.New York: W H Freeman and Company, 1982.
    [60] Kanno R. Representation of random walk in fractal space-time[J].Physica A,1998,248(1/2): 165-175.
    [61] 孙洪广, 常爱莲, 陈文, 张勇. 反常扩散: 分数阶导数建模及其在环境流动中的应用[J]. 中国科学: 物理学 力学 天文学, 2015,45(10): 104702.(SUN Hong-guang, CHANG Ai-lian, CHEN Wen, ZHANG Yong. Anomalous diffusion: fractional derivative modeling and its application in environment fluid[J].Scientia Sinica: Physica, Mechanica & Astronomica,2015, 45(10): 104702.(in Chinese))
    [62] SUN Hong-guang, CHEN Wen. Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence[J].Science in China Series E: Technological Sciences,2009,52(3): 680-683.
    [63] Balankin A S, Elizarraraz B E. Hydrodynamics of fractal continuum flow[J].Physical Review E,2012,85(2): 605-624.
    [64] SUN Hong-guang, Meerschaert M M, ZHANG Yong, ZHU Jian-ting, CHEN Wen. A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media[J].Advances in Water Resources,2013,52(4): 292-295.
    [65] Meyers M A, Chawla K K.Mechanical Behavior of Materials.New York: Cambridge University Press, 2008: 120-121.
    [66] Rouse P E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers[J].Journal of Chemical Physics,1953,21(7): 1272-1280.
    [67] Ferry J D, Landel R F, Williams M L. Extensions of the rouse theory of viscoelastic properties to undiluted linear polymers[J].Journal of Applied Physics,1955,26(4): 359-362.
    [68] Bagley R L, Torvik P J. Fractional calculus in the transient analysis of viscoelastically damped structures[J].AIAA Journal,1985,23(6): 918-925.
    [69] Schiessel H, Blumen A. Hierarchical analogues tofractional relaxation equations[J].Journal of Physics A: Mathematical and General,1993,26(19): 5057-5069.
    [70] Koh C G, Kelly J M. Application of fractional derivatives to seismic analysis of base-isolated models[J].Earthquake Engineering & Structural Dynamics,1990,19(2): 229-241.
    [71] Schiessel H, Friedrich C, Blumen A. Applications to problems in polymer physics and rheology[C]//Applications of Fractional Calculus in Physics.Singapore: World Scientific, 2000: 331-376.
    [72] Sabatier J, Agrawal O P, Tenreiro Machado J A, ed.Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering[C]. Netherlands: Springer, 2007.
    [73] Rossikhin Y A, Shitikova M V. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results[J].Applied Mechanics Reviews,2009,63: 010801.
    [74] Rossikhin Y A. Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids[J].Applied Mechanics Reviews,2009,63(1): 2809-2814.
    [75] Usuki T. Dispersion curves for 3D viscoelastic beams of solid circular cross section with fractional derivatives[J].Journal of Sound and Vibration,2013,332(1): 126-144.
    [76] Aguado J V, Abisset-Chavanne E, Cueto E, Chinesta F, Keunings R. Fractional modeling of functionalized CNT suspensions[J].Rheologic Acta,2015,54(2): 109-119.
    [77] Di Paola M, Failla G, Zingales M. Physically-based approach to the mechanics of strong non-local linear elasticity theory[J].Journal of Elasticity,2009,97(2): 103-130.
    [78] Szabo T L. Time domain wave equations for lossy media obeying a frequency power law[J].Journal of the Acoustical Society of America,1994,96(1): 491-500.
    [79] CHEN Wen, Holm S. Modified Szabo’s wave equation models for lossy media obeying frequency power law[J].Journal of the Acoustical Society of America,2003,114(5): 2570-2574.
    [80] CHEN Wen, Holm S. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency[J].Journal of the Acoustical Society of America,2004,115(4): 1424-1430.
    [81] Caputo M. Linear models of dissipation whose Q is almost frequency independent-II[J].Geophysical Journal of the Royal Astronomical Society,1967,13(5): 529-539.
    [82] Holm S, Nsholm S P. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography[J].Ultrasound in Medicine and Biology,2013,40(4): 695-703.
    [83] Bounam A, CHEN Wen. Computations for a breast ultrasonic imaging technique and finite element approach for a fractional derivative modeling the breast tissue acoustic attenuation[J].International Journal of Tomography & Statistics,2008,10(F08): 31-43.
    [84] ZHANG Xiao-di, CHEN Wen, ZHANG Chuan-zeng. Modified Szabo’s wave equation for arbitrarily frequency-dependent viscous dissipation in soft matter with applications to 3D ultrasonic imaging[J].Acta Mechanica Solida Sinica,2012,25(5): 510-519.
    [85] Holm S, Nsholm S P. A causal and fractional all-frequency wave equation for lossy media[J].Journal of the Acoustical Society of America,2011,130(4): 2195-2202.
    [86] Kelly J F, McGough R J. Analytical time-domain Green’s functions for power-law media[J].Journal of the Acoustical Society of America,2008,124(5): 2861-2872.
    [87] Treeby B E, Cox B T. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian[J].Journal of the Acoustical Society of America,2010,127(5): 2741-2748.
    [88] Butera S, Paola M D. A physically based connection between fractional calculus and fractal geometry[J].Annals of Physics,2014,350: 146-158.
    [89] Alaimo G, Zingales M. Laminar flow through fractal porous materials: the fractional-order transport equation[J].Communications in Nonlinear Science and Numerical Simulation,2015,22(1/3): 889-902.
    [90] Tarasov V E.Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media.Beijing: Higher Education Press, 2010: 24.
    [91] HE Ji-huan. A tutorial review on fractal spacetime and fractional calculus[J]. International Journal of Theoretical Physics,2014,53(11): 3698-3718.
    [92] Machado J T, Mainardi F, Kiryakova V. Fractional calculus: quo vadimus?(Where are we going?)[J].Fractional Calculus & Applied Analysis,2015,18(2): 495-526.
  • 加载中
计量
  • 文章访问数:  2047
  • HTML全文浏览量:  185
  • PDF下载量:  1422
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-26
  • 修回日期:  2015-09-07
  • 刊出日期:  2015-11-15

目录

    /

    返回文章
    返回