留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋表面波约化Hamilton方程的新发展:从小幅波到有限幅波的推广

王兆玲 肖衡

王兆玲, 肖衡. 海洋表面波约化Hamilton方程的新发展:从小幅波到有限幅波的推广[J]. 应用数学和力学, 2015, 36(11): 1135-1144. doi: 10.3879/j.issn.1000-0887.2015.11.002
引用本文: 王兆玲, 肖衡. 海洋表面波约化Hamilton方程的新发展:从小幅波到有限幅波的推广[J]. 应用数学和力学, 2015, 36(11): 1135-1144. doi: 10.3879/j.issn.1000-0887.2015.11.002
WANG Zhao-ling>, XIAO Heng. A New Development of Reduced Hamiltonian Equations for Ocean Surface Waves: an Extension From Small to Finite Amplitude[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1135-1144. doi: 10.3879/j.issn.1000-0887.2015.11.002
Citation: WANG Zhao-ling>, XIAO Heng. A New Development of Reduced Hamiltonian Equations for Ocean Surface Waves: an Extension From Small to Finite Amplitude[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1135-1144. doi: 10.3879/j.issn.1000-0887.2015.11.002

海洋表面波约化Hamilton方程的新发展:从小幅波到有限幅波的推广

doi: 10.3879/j.issn.1000-0887.2015.11.002
基金项目: 国家教委211工程科研启动基金(A.15-B002-09-032);国家自然科学基金(11372172)
详细信息
    作者简介:

    王兆玲(1979—),女,山东潍坊人,博士(E-mail: wangzhaoling555@126.com);肖衡(1963—),男,湖南永州人,教授,博士,博士生导师(通讯作者. E-mail: xiaoheng@shu.edu.cn).

  • 中图分类号: O302

A New Development of Reduced Hamiltonian Equations for Ocean Surface Waves: an Extension From Small to Finite Amplitude

Funds: The National Natural Science Foundation of China(11372172)
  • 摘要: 海洋表面波的3-波至5-波约化Hamilton方程由于其对称多项式简化结构以及保能量等独特优点,得到广泛应用.但是,据相关近似假设,其适用范围局限于波陡很小的弱非线性波.于是进一步探讨下述推广问题: 对一定范围内的有限幅非线性波,在足够精确意义上是否也能获得具对称多项式简化结构的约化Hamilton方程?由于涉及复杂非线性强耦合,在该重要方面至今尚未取得进展.提出基于Chebyshev(切比雪夫)多项式逼近处理精确水波方程强非线性耦合的新简化途径,导出具对称多项式简化结构的新约化Hamilton方程.新结果将波数与波陡之积为小量的弱非线性情形拓广到该积直至1.035的非线性情形.分析表明,在该范围内新结果的误差不超过5%,特别,当前述积邻近于0.9时新结果给出精确结果.
  • [1] Bouscasse B, Colagrossi A, Marrone S, Antuono M. Nonlinear water wave interaction with floating bodies in SPH[J].Journal of Fluid and Structures,2013,42: 112-129.
    [2] Belibassakis K A, Athanassoulis G A. A coupled-mode system with application to nonlinear water waves propagating in finite water depth and in variable bathymetry regions[J].Coastal Engineering,2011,58(4): 337-350.
    [3] TAO Long-bin, SONG Hao, Chakrabarti S. Nonlinear progressive waves in water of finite depth—an analytic approximation[J].Coastal Engineering,2007,54(11): 825-834.
    [4] LI Bin. A mathematical model for weakly nonlinear water wave propagation[J].Wave Motion,2010,47(5): 265-278.
    [5] Bateman W J D, Katsardi V, Swan C. Extreme ocean waves—part I: the practical application of fully nonlinear wave modeling[J].Applied Ocean Research,2012,34: 209-224.
    [6] Zakharov V. Stability of periodic waves of finite amplitude on the surface of a deep fluid[J].Journal of Applied Mechanics and Technical Physics,1968,9(2): 190-198.
    [7] Zakharov V E, Kharitonov V G. Instability of monochromatic waves on the surface of a liquid of arbitrary depth[J].Journal of Applied Mechanics and Technical Physics,1970,11(5): 741-751.
    [8] Miles J W. On Hamilton’s principle for surface waves[J].Journal of Fluid Mechanics,1977,83: 153-158.
    [9] Krasitskii V P. Canonical transformations in a theory of weakly nonlinear waves with a nondecay dispersion law[J].Soviet Physics JETP,1990,71(5): 921-927.
    [10] Krasitskii V P. On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves[J].Journal of Fluid Mechanics,1994,272: 1-20.
    [11] Stiassnie M, Shemer L. On modifications of the Zakharov equation for surface gravity waves[J].Journal of Fluid Mechanics,1984,143: 47-67.
    [12] Zakharov V E, Musher S L, Rubenchick A M. Hamiltonian approach to the description of non-linear plasma phenomena[J].Physics Reports,1985,129(5): 285-366.
    [13] Janssen P A E M. On some consequences of the canonical transformation in the Hamiltonian theory of water waves[J].Journal of Fluid Mechanics,2009,637: 1-44.
    [14] Benney D J, Roskes G J. Wave instabilities[J].Studies in Applied Mathematics,1969,48: 377-385.
    [15] Chu V H, Mei C C. On slowly-varying Stokes waves[J].Journal of Fluid Mechanics,1970,41(4): 873-887.
    [16] Davey A, Stewartson K. On three-dimensional packets of surface waves[J].Proceedings of the Royal Society of London(Series A: Mathematical and Physical Sciences),1974,338(1613): 101-110.
    [17] Lavrova O T. On the lateral instability of waves on the surface of a finite-depth fluid[J].Izvestiya Atmospheric and Oceanic Physics,1983,19: 807-810.
    [18] Newell A C, Rumpf B. Wave turbulence[J].Annual Review of Fluid Mechanics,2011,43: 59-78.
    [19] Tanaka M. Verification of Hasselmann’s energy transfer among surface gravity waves by direct numerical simulations of primitive equations[J].Journal of Fluid Mechanics,2001,444: 199-221.
    [20] Annenkov S Y, Shrira V I. Numerical modelling of water-wave evolution based on the Zakharov equation[J].Journal of Fluid Mechanics,2001,449: 341-371.
    [21] 黄虎. 近海波-流相互作用的缓坡方程理论体系[J]. 物理学报, 2010,59(2): 740-743.(HUANG Hu. A theoretical hierarchy of the mild-slope equations for wave-current interactions in coastal waters[J].Acta Physica Sinica,2010,59(2): 740-743.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1579
  • HTML全文浏览量:  173
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-10
  • 修回日期:  2015-09-08
  • 刊出日期:  2015-11-15

目录

    /

    返回文章
    返回