留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用格子Boltzmann方法模拟非线性热传导方程

刘芳 施卫平

刘芳, 施卫平. 用格子Boltzmann方法模拟非线性热传导方程[J]. 应用数学和力学, 2015, 36(11): 1158-1166. doi: 10.3879/j.issn.1000-0887.2015.11.004
引用本文: 刘芳, 施卫平. 用格子Boltzmann方法模拟非线性热传导方程[J]. 应用数学和力学, 2015, 36(11): 1158-1166. doi: 10.3879/j.issn.1000-0887.2015.11.004
LIU Fang, SHI Wei-ping. Simulation of the Nonlinear Heat Conduction Equation With the Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1158-1166. doi: 10.3879/j.issn.1000-0887.2015.11.004
Citation: LIU Fang, SHI Wei-ping. Simulation of the Nonlinear Heat Conduction Equation With the Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1158-1166. doi: 10.3879/j.issn.1000-0887.2015.11.004

用格子Boltzmann方法模拟非线性热传导方程

doi: 10.3879/j.issn.1000-0887.2015.11.004
基金项目: 国家自然科学基金(11401046);吉林省教育厅“十二五”科学技术研究计划(2014-478)
详细信息
    作者简介:

    刘芳(1982—),女,辽宁铁岭人,讲师,博士(通讯作者. E-mail: fairfang@sina.com);施卫平(1963—),男,长春人,教授,博士(E-mail: shiwp@jlu.edu.cn).

  • 中图分类号: O241.8

Simulation of the Nonlinear Heat Conduction Equation With the Lattice Boltzmann Method

Funds: The National Natural Science Foundation of China(11401046)
  • 摘要: 对具有非线性源项和非线性扩散项的热传导方程建立格子Boltzmann求解模型.在演化方程中增加了两个关于源项分布函数的微分算子,对演化方程实施Chapman-Enskog展开.通过对演化方程的进一步改进,恢复出具有高阶截断误差的宏观方程.对不同参数选取下的非线性热传导方程进行了数值模拟,数值解与精确解吻合得很好.该模型也可以用于同类型的其他偏微分方程的数值计算中.
  • [1] Benzi R, Succi S, Vergassola M. The lattice Boltzmann equation: theory and applications[J]. Physics Reports,1992,222(3): 145-197.
    [2] CHEN Shi-yi, Doolen G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics,1998,30: 329-364.
    [3] Qian Y H, Succi S, Orszag S A. Recent advances in lattice Boltzmann computing[J]. Annual Reviews of Computational Physics,1995,3: 195-242.
    [4] Dawson S P, Chen S, Doolen G D. Lattice Boltzmann computations for reaction-diffusion equations[J].The Journal of Chemical Physics,1993,98(2): 1514-1523.
    [5] Ginzburg I. Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation[J]. Advances in Water Resources,2005,28(11): 1171-1195.
    [6] Shi B, Guo Z. Lattice Boltzmann model for nonlinear convection-diffusion equations[J].Physical Review E,2009,79(1/2): 016701.
    [7] Liu F, Shi W P. Numerical solutions of two-dimensional Burgers’equations by lattice Boltzmann method[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(1): 150-157.
    [8] YANG Xu-guang, SHI Bao-chang, CHAI Zhen-hua. Coupled lattice Boltzmann method for generalized Keller-Segel chemotaxis model[J].Computers & Mathematics With Applications,2014,68(12): 1653-1670.
    [9] 谢驰宇, 张建影, 王沫然. 液滴在固体平表面上均匀蒸发过程的格子 Boltzmann模拟[J]. 应用数学和力学, 2014,35(3): 247-253.(XIE Chi-yu, ZHANG Jian-ying, WANG Mo-ran. Lattice Boltzmann simulation of droplet evaporation on flat solid surface[J].Applied Mathematics and Mechanics,2014,35(3): 247-253.(in Chinese))
    [10] 黄俊涛, 张力, 雍稳安, 王沫然. 格子Boltzmann方法解扩散方程的复杂边界条件研究[J]. 应用数学和力学, 2014,35(3): 305-312.(HUANG Jun-tao, ZHANG Li, YONG Wen-an, WANG Mo-ran. On complex boundary conditions of the lattice Boltzmann method for the diffusion equations[J].Applied Mathematics and Mechanics,2014,35(3): 305-312.(in Chinese))
    [11] Wazwaz A-M. The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations[J]. Applied Mathematics and Computation,2005,169(1): 321-338.
    [12] Becker M.Nonlinear transient heat conduction using similarity groups[J]. Journal of Heat Transfer,2000,122(1): 33-39.
    [13] Parlange J Y, Hogarth W L, Parlange M B,Haverkamp R, Barry D A, Ross P J, Steenhuis T S. Approximate analytical solution of the nonlinear diffusion equation for arbitrary boundary conditions[J].Transport in Porous Media,1998,30(1): 45-55.
    [14] Zel’Dovich Y B, Raizer Y P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena[M]. New York: Academic Press, 1966.
    [15] GUO Zhao-li, ZHENG Chu-guang, SHI Bao-chang. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics B,2002,11(4): 366-374.
  • 加载中
计量
  • 文章访问数:  1820
  • HTML全文浏览量:  130
  • PDF下载量:  765
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-10
  • 修回日期:  2015-08-20
  • 刊出日期:  2015-11-15

目录

    /

    返回文章
    返回