留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于状态方程矩形层合板多种边界条件下的解析解

卿光辉 张小欢

卿光辉, 张小欢. 基于状态方程矩形层合板多种边界条件下的解析解[J]. 应用数学和力学, 2015, 36(11): 1167-1177. doi: 10.3879/j.issn.1000-0887.2015.11.005
引用本文: 卿光辉, 张小欢. 基于状态方程矩形层合板多种边界条件下的解析解[J]. 应用数学和力学, 2015, 36(11): 1167-1177. doi: 10.3879/j.issn.1000-0887.2015.11.005
QING Guang-hui, ZHANG Xiao-huan. Analytical Solutions of Rectangular Laminated Plates Under Various Boundary Conditions in the State Space[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1167-1177. doi: 10.3879/j.issn.1000-0887.2015.11.005
Citation: QING Guang-hui, ZHANG Xiao-huan. Analytical Solutions of Rectangular Laminated Plates Under Various Boundary Conditions in the State Space[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1167-1177. doi: 10.3879/j.issn.1000-0887.2015.11.005

基于状态方程矩形层合板多种边界条件下的解析解

doi: 10.3879/j.issn.1000-0887.2015.11.005
基金项目: 国家自然科学基金(60979001)
详细信息
    作者简介:

    卿光辉(1968—),男,湖南人,教授,博士(E-mail: qingluke@126.com);张小欢(1989—),男,安徽人,硕士生(通讯作者. E-mail: huan10595@126.com).

  • 中图分类号: O342; O343

Analytical Solutions of Rectangular Laminated Plates Under Various Boundary Conditions in the State Space

Funds: The National Natural Science Foundation of China(60979001)
  • 摘要: 以边界位移函数方法为基础,推导了矩形层合板多种边界条件下的非齐次状态方程和定解条件.将非齐次状态方程增维齐次化,可避免积分时可能出现的数值病态问题,并简化了计算过程.边界位移沿厚度方向非线性分布假设可以适当减少数值结果收敛要求的薄层数.数值结果可作为其它数值法或半解析法的标准解.该文的方法可为分析更加复杂的边界条件问题提供参考.
  • [1] ZOU Gui-ping, TANG Li-min. Semi-analytical solution for laminated composite plates in Hamiltonian system[J].Computer Methods in Applied Mechanics and Engineering,1995,128(3/4): 395-404.
    [2] SHENG Hong-yu, YE Jian-qiao. A state space finite element for laminated composite plates[J].Computer Methods in Applied Mechanics and Engineering,2002,191(37/38): 4259-4276.
    [3] 唐立民, 褚致中, 邹贵平, 王治国, 刘迎曦. 混合状态Hamiltonian元的半解析解和叠层板的计算[J]. 计算力学学报, 1992,9(4): 347-360.(TANG Li-min, CHU Zhi-zhong, ZOU Gui-ping, WANG Zhi-guo, LIU Ying-xi. The semi-analytical solution of mixed state Hamiltonian element and the computation of laminated plates[J].Chinese Journal of Computational Mechanics,1992,9(4): 347-360.(in Chinese))
    [4] QING Guang-hui, QIU Jia-jun, LIU Yan-hong. Free vibration analysis of stiffened laminated plates[J].International Journal of Solids and Structures,2006,43(6): 1357-1371.
    [5] 卿光辉, 邱家俊, 刘艳红. 磁电弹性体修正后的H-R混合变分原理和状态向量方程[J]. 应用数学和力学, 2005,26(6): 665-670.(QING Guang-hui, QIU Jia-jun, LIU Yan-hong. Modified mixed variational principle for magnetoelectroelastic solids and state-vector equation[J].Applied Mathematics and Mechanics,2005,26(6): 665-670.(in Chinese))
    [6] FAN Jia-rang, YE Jian-qiao. A series solution of the exact equation for thick orthotropic plates[J].International Journal of Solids and Structures,1990,26(7): 773-778.
    [7] 范家让. 强厚叠层板壳的精确理论[M]. 北京: 科学出版社, 1996.(FAN Jia-rang.Exact Theory of Laminated Thick Plates and Shells [M]. Beijing: Science Press, 1996.(in Chinese))
    [8] Steele C R, Kim Y Y. Modified mixed variational principle and the state-vector equation for elastic bodies and shells of revolution[J].Journal of Applied Mechanics,1992,59(3): 587-595.
    [9] Heyliger P, Brooks S. Exact solutions for laminated piezoelectric plates in cylindrical bending[J].Journal of Applied Mechanics,1996,63(4): 903-910.
    [10] Ding H J, Wang H M, Ling D S. Analytical solution of a pyroelectric hollow cylinder for piezothermoelastic axisymmetric dynamic problems[J].Journal of Thermal Stresses,2003,26(3): 261-276.
    [11] Ding H J, Chen W Q, Xu R Q. New state space formulations for transversely isotropic piezoelasticity with application[J].Mechanics Research Communications,2000,27(3): 319-326.
    [12] 刘艳红, 陈庆远, 张惠明. 含固支边的压电层合板的解析解[J]. 工程力学, 2009,26(12): 6-11.(LIU Yan-hong, CHEN Qing-yuan, ZHANG Hui-ming. Analytical solution for laminated plates with clamped edges[J].Engineering Mechanics,2009,26(12): 6-11.(in Chinese))
    [13] 盛宏玉, 范家让. 具有固支边的强厚度层合板的一种新解法[J]. 计算物理, 1999,16(6): 682-687.(SHENG Hong-yu, FAN Jia-rang. A new approach to the thick laminated plates with clamped edges[J].Computing Physics,1999,16(6): 682-687.(in Chinese))
    [14] 王德才, 关群, 范家让. 任意厚度具有自由边叠层板的精确解析解[J]. 应用数学和力学, 2013,34(7): 672-686.(WANG De-cai, GUAN Qun, FAN Jia-rang. Exact analytic solution for laminated plates with free-edges and arbitrary thickness[J].Applied Mathematics and Mechanics,2013,34(7): 672-686.(in Chinese))
    [15] Ting T C T.Anisotropic Elasticity: Theory and Applications [M]. New York: Oxford University Press,1996.
    [16] Vel S S, Batra R C. Analytical solution for rectangular thick laminated plates subjected to arbitrary boundary conditions[J].American Institute of Aeronautics and Astronautics,1999,37(11): 1464-1473.
    [17] 钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.(ZHONG Wan-xie.A New Systematic Methodology for Theory of Elasticity [M]. Dalian: Dalian University of Technology Press, 1995.(in Chinese))
    [18] 顾元宪, 陈飙松, 张洪武. 结构动力方程的增维精细积分法[J]. 力学学报, 2000,32(4): 447-456.(GU Yuan-xian, CHEN Biao-song, ZHANG Hong-wu. Precise time-integration with dimension expanding method[J].Acta Mechanica Sinica,2000,32(4): 447-456.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1323
  • HTML全文浏览量:  95
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-30
  • 修回日期:  2015-09-30
  • 刊出日期:  2015-11-15

目录

    /

    返回文章
    返回