留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功率型变分原理和功能型拟变分原理及其应用

冯晓九 梁立孚

冯晓九, 梁立孚. 功率型变分原理和功能型拟变分原理及其应用[J]. 应用数学和力学, 2015, 36(11): 1178-1190. doi: 10.3879/j.issn.1000-0887.2015.11.006
引用本文: 冯晓九, 梁立孚. 功率型变分原理和功能型拟变分原理及其应用[J]. 应用数学和力学, 2015, 36(11): 1178-1190. doi: 10.3879/j.issn.1000-0887.2015.11.006
FENG Xiao-jiu, LIANG Li-fu. Power Type Variational Principles and Work-Energy Type Quasi-Variational Principles and Their Applications[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1178-1190. doi: 10.3879/j.issn.1000-0887.2015.11.006
Citation: FENG Xiao-jiu, LIANG Li-fu. Power Type Variational Principles and Work-Energy Type Quasi-Variational Principles and Their Applications[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1178-1190. doi: 10.3879/j.issn.1000-0887.2015.11.006

功率型变分原理和功能型拟变分原理及其应用

doi: 10.3879/j.issn.1000-0887.2015.11.006
基金项目: 国家自然科学基金(10272034)
详细信息
    作者简介:

    冯晓九(1964—),男,吉林人,教授,博士,硕士生导师(E-mail: fengxiaojiu999@126.com);梁立孚(1939—),男,河北人,教授,博士生导师(通讯作者. E-mail: lianglifu@hrbeu.edu.cn).

  • 中图分类号: O302

Power Type Variational Principles and Work-Energy Type Quasi-Variational Principles and Their Applications

Funds: The National Natural Science Foundation of China(10272034)
  • 摘要: 自从钱伟长建立了功率型变分原理以来,功率型变分原理和功能型变分原理在理论方面和应用方面有什么区别和联系,成为学术界关注的课题.应用变积方法,根据Jourdain原理和d’Alembert原理,建立了不可压缩黏性流体力学的功率型变分原理和功能型拟变分原理,推导了不可压缩黏性流体力学的功率型变分原理的驻值条件和功能型拟变分原理的拟驻值条件.研究了不可压缩黏性流体力学的功率型变分原理在有限元素法中的应用.研究表明,功率型变分原理与Jourdain原理相吻合,功能型变分原理与d’Alembert原理相吻合.功率型变分原理直接在状态空间中研究问题,不仅在建立变分原理的过程中可以省略在时域空间中的一些变换,而且给动力学问题有限元素法的数值建模带来方便.
  • [1] 程昌钧. 钱伟长先生对力学和应用数学的贡献[J]. 力学进展, 2010,40(9): 480-494.(CHENG Chang-jun. Mr QIAN Wei-chang’s contribution to the mechanics and applied mathematics[J].Advances in Mechanics,2010,40(9): 480-494.(in Chinese))
    [2] Reissner E. On a variational theorem in elasticity[J].Journal of Mathematics and Physics,1950,29(2): 90-98.
    [3] Washizu K.Variational Method in Elasticity and Plastisity[M]. New York: Pergamon Press, 1982.
    [4] Pian Theodore H H. Derivation of element stiffness matrices by assumed stress distributions[J].AIAA Journal,1964,2(7): 1333-1336.
    [5] 钱伟长. 粘性流体力学的变分原理和广义变分原理[J]. 应用数学和力学, 1984,5(3): 305-322.(CHIEN Wei-zang. Variational principles and generalized variational principles in hydrodynamics of viscous fluids[J].Applied Mathematics and Mechanics,1984,5(3): 305-322.(in Chinese))
    [6] HU Hai-chang. On some variational principles in the theory of elasticity and the theory of plasticity[J].Scientia Sinica,1955,4(1): 33-42.
    [7] 梁立孚, 石志飞. 关于变分学中逆问题的研究[J]. 应用数学和力学, 1994,15(9): 775-788.(LIANG Li-fu, SHI Zhi-fei. On the inverse problem in calculus of variations[J].Applied Mathematics and Mechanics,1994,15(9): 775-788.(in Chinese))
    [8] 梁立孚, 石志飞. 粘性流体力学的变分原理及其广义变分原理[J]. 应用力学学报, 1993,10(1): 119-123.(LIANG Li-fu, SHI Zhi-fei. Quasi-variational principles of incompressible viscous fluids[J].Chinese Journal of Applied Mechanics,1993,10(1): 119-123.(in Chinese))
    [9] 郝名望, 梁立孚, 叶正寅. 不可压粘性流体力学的边值问题的拟变分原理及其广义拟变分原理[J]. 空气动力学学报, 2010,28(3): 297-301.(HAO Ming-wang, LIANG Li-fu, YE Zheng-yin. Quasi-variational principle and general quasi-variational principle for incompressible flow boundary value problems[J].Acta Aerodynamica Sinica,2010,28(3): 297-301.(in Chinese))
    [10] 郝名望, 梁立孚, 叶正寅. 不可压粘性流体力学初值问题的拟变分原理及广义变分原理[J]. 空气动力学学报, 2011,29(3): 317-324.(HAO Ming-wang, LIANG Li-fu, YE Zheng-yin. Quasi-variational principle and general quasi-variational principle for incompressible flow initial value problems[J].Acta Aerodynamica Sinica,2011,29(3): 317-324.(in Chinese))
    [11] 陈波, 李孝伟, 刘高联. 一个关于流动能量耗散率的minimax变分原理[J]. 应用数学和力学, 2010,31(7): 772-780.(CHEN Bo, LI Xiao-wei, LIU Gao-lian. Minimax principle on energy dissipation of incompressible shear flow[J].Applied Mathematics and Mechanics,2010,31(7): 772-780.(in Chinese))
    [12] 钱伟长. 广义变分原理[M]. 上海: 知识出版社, 1985.(CHIEN Wei-zang.Generalized Variational Principles [M]. Shanghai: Affairs Press, 1985.(in Chinese))
    [13] 钱伟长. 对合变换和薄板弯曲问题的多变量变分原理[J]. 应用数学和力学, 1985,6(1): 25-40.(CHIEN Wei-zang. Involutory transformations and variational principles with multivariables in thin plate bending problems[J].Applied Mathematics and Mechanics,1985,6(1): 25-40.(in Chinese))
    [14] 刘高联. 流体力学变分原理及其有限元法研究的进展[J]. 上海力学, 1989,10(3): 73-80.(LIU Gao-lian. The progress of fluid mechanics variational principles and finite element method[J].Shanghai Mechanical,1989,10(3): 73-80.(in Chinese))
    [15] 沈孝明. 粘性流体动力学的混合协调元和混合杂交非协调元变分法[J]. 应用数学和力学, 1992,15(6): 529-537.(SHEN Xiao-ming. Hybrid coordinate elements and the hybrid coordinate elements variational method of viscous fluid dynamics[J].Applied Mathematics and Mechanics,1992,15(6): 529-537.(in Chinese))
    [16] 罗振东, 朱江. 定常的Navier-Stokes方程的非线性Galerkin混合元法及其后验估计[J]. 应用数学和力学, 2002,23(10): 1061-1072.(LUO Zhen-dong, ZHU Jiang. A nonlinear Galerkin mixed element method and a posteriori error estimator for the stationary Navier-Stokes equations[J].Applied Mathematics and Mechanics, 2002,23(10): 1061-1072.(in Chinese))
    [17] 余云龙, 林忠, 王瑞利, 刘全, 陈星玎. 辐射流体力学Lagrange方程组一类人为解构造方法[J]. 应用数学和力学, 2015,36(1): 110-118.(YU Yun-long, LIN Zhong, WANG Rui-li, LIU Quan, CHEN Xing-ding. A method of manufacturing solutions for verification of Lagrangian radiation hydrodynamic codes[J].Applied Mathematics and Mechanics,2015,36(1): 110-118.(in Chinese))
    [18] 钱伟长. 变分法及有限元[M]. 北京: 科学出版社, 1980.(CHIEN Wei-zang.Variational Method and Finite Element Method [M]. Beijing: Science Press, 1980.(in Chinese))
    [19] HU Hai-chang.Variational Principles of Theory of Elasticity With Applications [M]. Beijing: Science Press; New York: Gordon and Breach, Science Publishers Inc, 1984.
    [20] 梁立孚, 宋海燕, 樊涛, 刘宗民. 非保守系统的拟变分原理及其应用[M]. 北京: 科学出版社, 2015.(LIANG Li-fu, SONG Hai-yan, FAN Tao, LIU Zong-min.Quasi-Variational Principles of Non-Conservative Systems With Applications[M]. Beijing: Science Press, 2015.(in Chinese))
    [21] 吴望一. 流体力学[M]. 北京: 北京大学出版社, 2004.(WU Wang-yi.Fluid Mechanics [M]. Beijing: Peking University Press,2004.(in Chinese))
    [22] Acheson D J.Elementary Fluid Dynamics [M]. New York: Oxford University Press Inc, 2009.
  • 加载中
计量
  • 文章访问数:  1544
  • HTML全文浏览量:  118
  • PDF下载量:  717
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-18
  • 修回日期:  2015-09-09
  • 刊出日期:  2015-11-15

目录

    /

    返回文章
    返回