留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高维弱扰动破裂孤子波方程行波解

张良 林万涛 陈贤峰 莫嘉琪

张良, 林万涛, 陈贤峰, 莫嘉琪. 高维弱扰动破裂孤子波方程行波解[J]. 应用数学和力学, 2015, 36(11): 1204-1210. doi: 10.3879/j.issn.1000-0887.2015.11.008
引用本文: 张良, 林万涛, 陈贤峰, 莫嘉琪. 高维弱扰动破裂孤子波方程行波解[J]. 应用数学和力学, 2015, 36(11): 1204-1210. doi: 10.3879/j.issn.1000-0887.2015.11.008
ZHANG Liang, LIN Wan-tao, CHEN Xian-feng, MO Jia-qi. Travelling Solutions to High-Dimensional Weakly Perturbed Breaking Soliton Wave Equations[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1204-1210. doi: 10.3879/j.issn.1000-0887.2015.11.008
Citation: ZHANG Liang, LIN Wan-tao, CHEN Xian-feng, MO Jia-qi. Travelling Solutions to High-Dimensional Weakly Perturbed Breaking Soliton Wave Equations[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1204-1210. doi: 10.3879/j.issn.1000-0887.2015.11.008

高维弱扰动破裂孤子波方程行波解

doi: 10.3879/j.issn.1000-0887.2015.11.008
基金项目: 国家自然科学基金(41275062;11371248);安徽省教育厅自然科学课题(KJ2015A347;KJ2013B153)
详细信息
    作者简介:

    张良(1962—),男, 安徽蒙城人, 副教授, 硕士(E-mail: bzszzhangl@163.com);莫嘉琪(1937—),男,浙江德清人,教授(通讯作者. E-mail: mojiaqi@mail.ahnu.edu.cn).

  • 中图分类号: O175.29

Travelling Solutions to High-Dimensional Weakly Perturbed Breaking Soliton Wave Equations

Funds: The National Natural Science Foundation of China(41275062;11371248)
  • 摘要: 研究了一类高维弱扰动破裂孤子波方程.首先讨论了对应的典型破裂孤子波方程, 利用待定系数投射方法得到了孤子波精确解.再利用泛函分析和摄动理论得到了原弱扰动破裂孤子波方程的孤子行波渐近解.最后, 举出例子说明了用该方法得到的弱扰动破裂孤子波方程的行波渐近解具有简捷、有效和较高精度的优点.
  • [1] Hasselman K. Stochastic climate models, part Ⅰ: theory[J]. Tellus,1976,28(6): 473-486.
    [2] Frankignoul C, Hasselman K. Stochastic climate models, part II: application to sea-surface temperature anomalies and thermocline variability[J]. Tellus,1977,29(4): 289-305.
    [3] Lemke P. Stochastic perturbation of deterministic systems, part 3: application to zonally averaged energy models[J]. Tellus,1977,29(5): 385-392.
    [4] 李麦村. 海气相互作用的随机-动力理论[J]. 海洋学报, 1981,3(3): 382-389.(LI Mai-cun. The stochastic theory of air-sea interaction[J]. Acta Oceanologica Sinica,1981,3(3): 382-389.(in Chinese))
    [5] Mller J D, Shapiro L J. Influences of asymmetric heating on hurricane evolution in the MM5[J]. Journal of the Atmospheric Sciences,2005,62(11): 3974-3992.
    [6] Luo J J, Masson S, Behera S, Yamagata T. Extended ENSO predictions using a fully coupled ocean-atmosphere model[J]. Journal of Climate,2008,21(1): 84-93.
    [7] FENG Guo-ling, CAO Yong-zhong, CAO Hong-xing. Air-sea stochastic climatic model and its application[J]. Chinese Journal of Computational Physics, 2001,18(1): 57-63.
    [8] Zhang R H, Zebiak S E. An embedding method for improving interannual variability simulations in a hybrid coupled model of the tropical Pacific Ocean-atmosphere system[J]. Journal of Climate,2004,17(14): 2794-2812.
    [9] 李麦村, 黄嘉佑. 关于海温准三年及半年周期振荡的随机气候模式[J]. 气象学报, 1984,42(2): 168-176.(LI Mai-cun, HUANG Jia-you. A stochastic climate model on the quasithree-yearly and half-yearly oscillation of the sea surface temperature[J]. Journal of Meteorology,1984,42(2): 168-176.(in Chinese))
    [10] WANG Chun-zai. A unified oscillator model for the El Nino-southern oscillation[J]. Journal of Climate,2001,14(1): 98-115.
    [11] LI Xiao-jing. The periodic solution to the model for the El Nino-southern oscillation[J]. Chinese Physics B,2010,19(3): 030201-1-030201-3.
    [12] DU Zeng-ji, LIN Wan-tao, MO Jia-qi. Perturbation method of studying the El Nino oscillation with two parameters by using the delay sea-air oscillator model[J]. Chinese Physics B,2012,21(9): 090201-1-090201-5.
    [13] 陈丽娟, 鲁世平. 一类太空等离子体单粒子运动模型的同宿轨[J]. 应用数学和力学, 2013,34(12): 1258-1265.(CHEN Li-juan, LU Shi-ping. Homoclinic orbit of the motion model for a single space plasma particle[J]. Applied Mathematics and Mechanics,2013,34(12): 1258-1265.(in Chinese))
    [14] 陈丽娟, 鲁世平. 零维气候系统非线性模式的周期解问题[J]. 物理学报, 2013,62(20): 200201-1-200201-4.(CHEN Li-juan, LU Shi-ping. The problem of periodic solution of nonlinear model in zero-dimensional climate system[J]. Acta Physica Sinica,2013,62(20): 200201-1-200201-4.(in Chinese))
    [15] 陈丽娟, 鲁世平. 无晨昏电场下带电粒子在中性片磁场中运动的周期轨[J]. 应用数学和力学, 2014,35(11): 1280-1286.(CHEN Li-juan, LU Shi-ping. The periodic orbits of electric particles sporting in neutral sheet magnetic field without the dawn-dusk electric field[J]. Applied Mathematics and Mechanics,2014,35(11): 1280-1286.(in Chinese))
    [16] Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations [M]. Berlin: Springer, 1977.
    [17] LU Shi-ping, CHEN Li-juan. The problem of existence of periodic solutions for neutral functional differential system with nonlinear difference operator[J]. J Math Anal Appl,2012,387(2): 1127-1136.
  • 加载中
计量
  • 文章访问数:  1255
  • HTML全文浏览量:  103
  • PDF下载量:  720
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-15
  • 修回日期:  2015-07-10
  • 刊出日期:  2015-11-15

目录

    /

    返回文章
    返回