[1] |
梅凤翔. 李群和李代数对约束力学系统的应用[M]. 北京: 科学出版社, 1999.(MEI Feng-xiang. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems [M]. Beijing: Science Press, 1999.(in Chinese))
|
[2] |
薛纭, 曲佳乐, 陈立群. Cosserat生长弹性杆动力学的Gauss最小拘束原理[J]. 应用数学和力学,2015,36(7): 700-709.(XUE Yun, QU Jia-le, CHEN Li-qun. Gauss principle of least constraint for Cosserat growing elastic rod dynamics[J]. Applied Mathematics and Mechanics,2015,36(7): 700-709.(in Chinese))
|
[3] |
顾书龙, 张宏彬. Kepler方程的Noether对称性与Hojman守恒量[J]. 物理学报, 2010,59(2): 716-718.(GU Shu-long, ZHANG Hong-bin. Noether symmetry and the Hojman conserved quantity of Kepler equation[J].Acta Physica Sinica,2010,59(2): 716-718.(in Chinese))
|
[4] |
张毅. Lagrange系统的共形不变性与Noether对称性和Lie对称性[J]. 苏州科技学院学报(自然科学版), 2009,26(1): 1-5.(ZHANG Yi. Conformal invariance, Noether symmetry and Lie symmetry of Lagrangian systems[J].Journal of Suzhou University of Science and Technology(Natural Science),2009,26(1): 1-5.(in Chinese))
|
[5] |
葛伟宽, 张毅, 薛纭. Rosenberg问题的对称性与守恒量[J]. 物理学报, 2010,59(7): 4434-4436.(GE Wei-kuan, ZHANG Yi, XUE Yun. Symmetries and conserved quantities of the Rosenberg problem[J].Acta Physica Sinica,2010,59(7): 4434-4436.(in Chinese))
|
[6] |
FU Jing-li, CHEN Li-qun. On Noether sysmmetries and form invariance of mechanico-electrical systems[J]. Physics Letters A,2004,331(3/4): 138-152.
|
[7] |
FANG Jian-hui. A new type of conserved quantity of Lie symmetry for the Lagrange system[J].Chinese Physics B,2010,19(4): 21-24.
|
[8] |
楼智美. 两自由度弱非线性耦合系统的一阶近似Lie 对称性与近似守恒量[J]. 物理学报, 2013,62(27): 220202.(LOU Zhi-mei. The first order approximate Lie symmetries and approximate conserved quantities of the weak nonlinear coupled two-dimensional system[J].Acta Physica Sinica,2013,62(27): 220202.(in Chinese))
|
[9] |
刘畅, 刘世兴, 梅凤翔, 郭永新. 广义Hamilton系统的共形不变性与Hojman 守恒量[J]. 物理学报, 2008,57(11): 6709-6713.(LIU Chang, LIU Shi-xing, MEI Feng-xiang, GUO Yong-xin. Conformal invariance and Hojman conserved quantities of generalized Hamilton systems[J].Acta Physica Sinica,2008,57(11): 6709-6713.(in Chinese))
|
[10] |
梅凤翔. 具有可积微分约束的系统的Lie对称性[J]. 力学学报, 2000,32(4): 466-472.(MEI Feng-xiang. Lie symmetries of mechanical system with integral differential constraints[J].Acta Mechanica Sinica,2000,32(4): 466-472.(in Chinese))
|
[11] |
黄卫立, 蔡建乐. 变质量Chetaev型非完整系统的共形不变性[J]. 应用数学和力学, 2012,33(11): 1294-1303.(HUANG Wei-li, CAI Jian-le. Conformal invariance for the nonholonomic system of Chetaev’s type with variable mass[J]. Applied Mathematics and Mechanics,2012,33(11): 1294-1303.(in Chinese))
|
[12] |
邹丽, 王振, 宗智, 王喜军, 张朔. 指数同伦法对Cauchy条件下变系数Burgers方程的解析与数值分析[J]. 应用数学和力学, 2014,35(7): 777-789.(ZOU Li, WANG Zhen, ZONG Zhi, WANG Xi-jun, ZHANG Shuo. Analytical and numerical investigation of the variable coefficient Burgers equation under Cauchy condition with the exponential homotopy method[J].Applied Mathematics and Mechanics,2014,35(7): 777-789.(in Chinese))
|
[13] |
梅凤翔. Lagrange系统的形式不变性[J]. 北京理工大学学报, 2000,9(2): 120-124.(MEI Feng-xiang. Form invariance of Lagrange system[J].Journal of Beijing Institute of Technology,2000,9(2): 120-124.(in Chinese))
|
[14] |
ZHANG Yi. Symmetries and conserved quantities of generalized Birkhoffian systems[J].Journal of Southeast University(English Edition),2010,26(1): 146-150.
|
[15] |
方建会, 丁宁, 王鹏. Hamilton系统Mei对称性的一种新守恒量[J]. 物理学报, 2007,56(6): 3039-3042.(FANG Jian-hui, DING Ning, WANG Peng. A new type of conserved quantity of Mei symmetry for Hamilton system[J].Acta Physica Sinica,2007,56(6): 3039-3042.(in Chinese))
|
[16] |
郑世旺, 解加芳, 陈向炜, 杜雪莲. 完整系统Tzénoff方程的Mei对称性直接导致的另一种守恒量[J]. 物理学报, 2010,59(8): 5209-5212.(ZHENG Shi-wang, XIE Jia-fang, CHEN Xiang-wei, DU Xue-lian. Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems[J].Acta Physica Sinica,2010,59(8): 5209-5212.(in Chinese))
|
[17] |
张策. 机械动力学[M]. 第二版. 北京: 高等教育出版社, 2008: 142-143.(ZHANG Ce. Machinery Dynamics [M]. 2nd ed. Beijing: Higher Education Press, 2008: 142-143.(in Chinese))
|