留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒弥散增强型核辐射屏蔽材料强度模型研究

何铮 王绪伟 D·孔多

何铮, 王绪伟, D·孔多. 颗粒弥散增强型核辐射屏蔽材料强度模型研究[J]. 应用数学和力学, 2015, 36(12): 1306-1314. doi: 10.3879/j.issn.1000-0887.2015.12.009
引用本文: 何铮, 王绪伟, D·孔多. 颗粒弥散增强型核辐射屏蔽材料强度模型研究[J]. 应用数学和力学, 2015, 36(12): 1306-1314. doi: 10.3879/j.issn.1000-0887.2015.12.009
HE Zheng, WANG Xu-wei, Djimedo Kondo. A Meso-Micromechanics Approach to the Strength Criteria for Particle-Reinforced Radiation-Shielding Materials[J]. Applied Mathematics and Mechanics, 2015, 36(12): 1306-1314. doi: 10.3879/j.issn.1000-0887.2015.12.009
Citation: HE Zheng, WANG Xu-wei, Djimedo Kondo. A Meso-Micromechanics Approach to the Strength Criteria for Particle-Reinforced Radiation-Shielding Materials[J]. Applied Mathematics and Mechanics, 2015, 36(12): 1306-1314. doi: 10.3879/j.issn.1000-0887.2015.12.009

颗粒弥散增强型核辐射屏蔽材料强度模型研究

doi: 10.3879/j.issn.1000-0887.2015.12.009
基金项目: 国家科技重大专项(大型先进压水堆核电站重大专项)(2012ZX06004-012)
详细信息
    作者简介:

    何铮(1983—),男,北京人,高级工程师,博士(通讯作者. E-mail: hezheng@snptc.com.cn).

  • 中图分类号: O324;TB332

A Meso-Micromechanics Approach to the Strength Criteria for Particle-Reinforced Radiation-Shielding Materials

Funds: The National Science and Technology Major Project of China(2012ZX06004-012)
  • 摘要: 基于微观力学的均匀化理论,旨在从核辐射屏蔽材料的微观结构、物理特性的角度出发,通过多尺度方法研究了材料宏观的机械力学性质.主要研究对象为颗粒弥散增强的孔隙基体材料,推导出了此类复合材料(金属基材料、非金属类材料)的强度准则模型,可预测微观孔隙率与颗粒相体积分数对材料宏观强度的影响.在塑性极限分析法的理论框架下,在介观上成功引入了速度场跳动来描述两相界面间的力学特性,利用刚性核的球体胞元模型进行求解.最后,选用了界面速度为0的速度场对模型进行研究,并初步探讨了界面效应对材料性能的影响.
  • [1] Electric Power Research Institute. Handbook of neutron absorber materials for spent nuclear fuel transportation and storage applications 2006 edition[R]. USA, 2006.
    [2] Westing House. AP1000 standard combined license technical report-spent fuel storage racks criticality analysis[R]. USA, 2006.
    [3] Kok K D.Nuclear Engineering Handbook [M]. New York: CRC Press, 2009: 152.
    [4] 戴春娟, 刘希琴, 刘子利, 刘伯路. 铝基碳化硼材料中子屏蔽性能的蒙特卡罗模拟[J]. 物理学报, 2013,62(15): 152801.(DAI Chun-juan, LIU Xi-qin, LIU Zi-li, LIU Bo-lu. The Monte Carlo simulation of neutron shielding performance of boron carbide reinforced with aluminum composites[J].Acta Physica Sinica,2013,62(15): 152801.(in Chinese))
    [5] 王美玲, 李刚, 陈乐, 刘晓珍, 孙长龙, 刘云明, 刘超红. B4C-Al中子吸收材料拉伸性能及断裂机理[J]. 原子能科学技术, 2014 ,〖STHZ〗48(5): 883-887.(WANG Mei-ling, LI Gang, CHEN Le, LIU Xiao-zhen, SUN Chang-long, LIU Yun-ming, LIU Chao-hong. Tensile property and fracture mechanism of B4C-Al neutron absorber material[J].Atomic Energy Science and Technology,2014,48(5): 883-887. (in Chinese))
    [6] G?r?jeu M, Suquet P. Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles[J].Journal of the Mechanics and Physics of Solids,1997,45(6): 873-902.
    [7] Vincent P G, Monerie Y, Suquet P. Porous materials with two populations of voids under internal pressure—I: instantaneous constitutive relations[J].International Journal of Solids and Structures,2009,46(3/4): 480-506.
    [8] Vincent P G, Monerie Y, Suquet P. Porous materials with two populations of voids under internal pressure—II: growth and coalescence of voids[J].International Journal of Solids and Structures,2009,46(3/4): 507-526.
    [9] He Z, Caratini G, Dormieux L, Kondo D. Homogenization of anisotropic elastoplastic behaviors of a porous polycrystal with interface effects[J].International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(18): 3213-3236.
    [10] He Z, Dormieux L, Lemarchand E, Kondo D. Cohesive Mohr-Coulomb interface effects on the strength criterion of materials with granular-based microstructure[J].European Journal of Mechanics-A/Solids,2013,42: 430-440.
    [11] Shen W Q, Kondo D, Dormieux L, Shao J F. A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[J].Mechanics of Materials,2013,59: 73-86.
    [12] Maghous S, Dormieux L, Barthélémy J F. Micromechanical approach to the strength properties of frictional geomaterials[J].European Journal of Mechanics-A/Solids,2009,28(1): 179-188.
    [13] Castaneda P P. The effective mechanical properties of nonlinear isotropic composites[J]. Journal of the Mechanics and Physics of Solids,1991,39(1): 45-71.
    [14] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: part I—yield criterion and flow rules for porous ductile media[J].Journal of Engineering Materials and Technology,1977,99(1): 2-15.
    [15] Salenon J. An introduction to the yield design theory and its applications to soil mechanics[J].European Journal of Mechanics-A/Solids,1990,9(5): 477-500.
    [16] Dormieux L, Kondo D, Ulm F J. Microporomechanics [M]. New York: John Wiley & Sons, 2006.
    [17] Leblond J B, Perrin G, Suquet P. Exact results and approximate models for porous viscoplastic solids[J].International Journal of Plasticity,1994,10(3): 213-235.
    [18] He Z, Dormieux L, Kondo D. Strength properties of a Drucker-Prager porous medium reinforced by rigid particles[J].International Journal of Plasticity,2013,51: 218-240.
  • 加载中
计量
  • 文章访问数:  1395
  • HTML全文浏览量:  73
  • PDF下载量:  641
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-09-12
  • 刊出日期:  2015-12-15

目录

    /

    返回文章
    返回