留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H-张量判定的新迭代准则及其应用

王峰 孙德淑

王峰, 孙德淑. H-张量判定的新迭代准则及其应用[J]. 应用数学和力学, 2015, 36(12): 1315-1323. doi: 10.3879/j.issn.1000-0887.2015.12.010
引用本文: 王峰, 孙德淑. H-张量判定的新迭代准则及其应用[J]. 应用数学和力学, 2015, 36(12): 1315-1323. doi: 10.3879/j.issn.1000-0887.2015.12.010
WANG Feng, SUN De-shu. New Iterative Judging Criteria for H-Tensors and Some Applications[J]. Applied Mathematics and Mechanics, 2015, 36(12): 1315-1323. doi: 10.3879/j.issn.1000-0887.2015.12.010
Citation: WANG Feng, SUN De-shu. New Iterative Judging Criteria for H-Tensors and Some Applications[J]. Applied Mathematics and Mechanics, 2015, 36(12): 1315-1323. doi: 10.3879/j.issn.1000-0887.2015.12.010

H-张量判定的新迭代准则及其应用

doi: 10.3879/j.issn.1000-0887.2015.12.010
基金项目: 国家自然科学基金(11361074);贵州省科学技术基金([2015]2073);贵州省教育厅自然科学基金([2015]420)
详细信息
    作者简介:

    王峰(1981—),男,山东临沂人,副教授,博士(通讯作者. E-mail: wangf991@163.com).

  • 中图分类号: O151.21

New Iterative Judging Criteria for H-Tensors and Some Applications

Funds: The National Natural Science Foundation of China(11361074)
  • 摘要: H-张量在科学和工程实际中具有重要应用,但在实际中要判定H-张量是比较困难的.通过构造不同的正对角阵,结合不等式的放缩技巧,给出了H-张量判定的几个新迭代准则.作为应用,给出了判定偶数阶实对称张量正定性的条件,相应的数值例子说明了结果的有效性.
  • [1] QI Li-qun. Eigenvalues of a real supersymmetric tensor[J].Journal of Symbolic Computation,2005,40(6): 1302-1324.
    [2] YANG Yu-ning, YANG Qing-zhi. Further results for Perron-Frobenius theorem for nonnegative tensors[J].SIAM Journal on Matrix Analysis and Applications,2010,31(5): 2517-2530.
    [3] LI Chao-qian, LI Yao-tang, KONG Xu. New eigenvalue inclusion sets for tensors[J].Numerical Linear Algebra With Applications,2014,21(1): 39-50.
    [4] Kolda T G, Mayo J R. Shifted power method for computing tensor eigenpairs[J].SIAM Journal on Matrix Analysis and Applications,2011,32(4): 1095-1124.
    [5] Lim L H. Singular values and eigenvalues of tensors: a variational approach[C]// Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,2005,1: 129-132.
    [6] QI Li-qun. Eigenvalues and invariants of tensors[J].Journal of Mathematical Analysis and Applications,2007,325(2): 1363-1377.
    [7] QI Li-qun, WANG Fei, WANG Yi-ju. Z-eigenvalue methods for a global polynomial optimization problem[J].Mathematical Programming,2009,118(2): 301-316.
    [8] NI Qin, QI Li-qun, WANG Fei. An eigenvalue method for the positive definiteness identification problem[J].IEEE Transactions on Automatic Control,2008,53(5): 1096-1107.
    [9] NI Gu-yan, QI Li-qun, WANG Feng, WANG Yi-ju. The degree of the E-characteristic polynomial of an even order tensor[J].Journal of Mathematical Analysis and Applications,2007,329(2): 1218-1229.
    [10] ZHANG Li-ping, QI Li-qun, ZHOU Guang-lu.M-tensors and some applications[J].SIAM Journal on Matrix Analysis and Applications,2014,35(2): 437-452.
    [11] DING Wei-yang, QI Li-qun, WEI Yi-min.M-tensors and nonsingular M-tensors[J].Linear Algebra and Its Applications,2013,439(10): 3264-3278.
    [12] LI Chao-qian, WANG Feng, ZHAO Jian-xing, ZHU Yan, LI Yao-tang. Criterions for the positive definiteness of real supersymmetric tensors[J].Journal of Computational and Applied Mathematics,2014,255(1): 1-14.
  • 加载中
计量
  • 文章访问数:  1467
  • HTML全文浏览量:  84
  • PDF下载量:  706
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-30
  • 修回日期:  2015-10-12
  • 刊出日期:  2015-12-15

目录

    /

    返回文章
    返回