[1] |
林家浩, 张亚辉. 随机振动的虚拟激励法[M]. 北京: 科学出版社, 2004.(LIN Jia-hao, ZHANG Ya-hui. Pseudo-Excitation Method for Random Vibration [M]. Beijing: Science Press, 2004.(in Chinese))
|
[2] |
Lutes L D, Sarkani S. Random Vibrations: Analysis of Structural and Mechanical Systems[M]. Amsterdam: Elsevier, 2004.
|
[3] |
朱位秋. 非线性随机动力学与控制——Hamilton理论体系框架[M]. 北京: 科学出版社, 2003.(ZHU Wei-qiu. Nonlinear Stochastic Dynamics and Control—Hamilton Theoretical Framework[M]. Beijing: Science Press, 2003.(in Chinese))
|
[4] |
李杰, 陈建兵. 随机结构反应的概率密度演化分析[J]. 同济大学学报(自然科学版), 2003,31(12): 1387-1391.(LI Jie, CHEN Jian-bing. Probability density evolution of stochastic structural responses[J]. Journal of Tongji University(Natural Science),2003,31(12): 1387-1391.(in Chinese))
|
[5] |
Li J, Chen J B. Probability density evolution method for dynamic response analysis of structures with uncertain parameters[J].Computational Mechanics,2004,34(5): 400-409.
|
[6] |
Li J, Chen J B.Stochastic Dynamics of Structures [M]. Singapore: John Wiley & Sons, 2009.
|
[7] |
陈建兵, 李杰. 结构随机地震反应与可靠度的概率密度演化分析研究进展[J]. 工程力学, 2014,31(4): 1-10.(CHEN Jian-bing, LI Jie. Probability density evolution method for stochastic seismic response and reliability of structures[J]. Engineering Mechanics,2014,31(4): 1-10.(in Chinese))
|
[8] |
LI Jie, CHEN Jian-bing. The dimension-reduction strategy via mapping for probability density evolution analysis of nonlinear stochastic systems[J]. Probabilistic Engineering Mechanics,2006,21(4): 442-453.
|
[9] |
陈建兵, 李杰. 结构随机响应概率密度演化分析的数论选点法[J]. 力学学报, 2006,38(1): 134-140.(CHEN Jian-bing, LI Jie. Strategy of selecting points via number theoretical method in probability density evolution analysis of stochastic response of structures[J]. Chinese Journal of Theoretical and Applied Mechanics,2006,38(1): 134-140.(in Chinese))
|
[10] |
LI Jie, CHEN Jian-bing. The number theoretical method in response analysis of nonlinear stochastic structures[J]. Computational Mechanics,2007,39(6): 693-708.
|
[11] |
陈建兵, 李杰. 随机结构反应概率密度演化分析的切球选点法[J]. 振动工程学报, 2006,19(1): 1-8.(CHEN Jian-bing, LI Jie. Strategy of selecting points via sphere of contact in probability density evolution method for response analysis of stochastic structures[J]. Journal of Vibration Engineering,2006,19(1): 1-8.(in Chinese))
|
[12] |
CHEN Jian-bing, LI Jie. Strategy for selecting representative points via tangent spheres in the probability density evolution method[J].International Journal for Numerical Methods in Engineering,2008,74(13): 1988-2014.
|
[13] |
李杰, 徐军, 陈建兵. 概率密度演化理论的拟对称点法[J]. 武汉理工大学学报, 2010,32(9): 1-5.(LI Jie, XU Jun, CHEN Jian-bing. The use of quasi-symmetric point method in probability density evolution theory[J]. Journal of Wuhan University of Technology,2010,32(9): 1-5.(in Chinese))
|
[14] |
李杰, 艾晓秋. 基于物理的随机地震动模型研究[J]. 地震工程与工程振动, 2006,26(5): 21-26.(LI Jie, AI Xiao-qiu. Study on random model of earthquake ground motion based on physical process[J].Earthquake Engineering and Engineering Vibration,2006,26(5): 21-26.(in Chinese))
|
[15] |
艾晓秋, 李杰. 基于随机Fourier谱的地震动合成研究[J]. 地震工程与工程振动, 2009,29(2): 7-12.(AI Xiao-qiu, LI Jie. Synthesis method of non-stationary ground motion based on random Fourier spectra[J].Earthquake Engineering and Engineering Vibration,2009,29(2): 7-12.(in Chinese))
|
[16] |
李杰, 李国强. 地震工程学导论[M]. 北京: 地震出版社, 1992.(LI Jie, LI Guo-qiang. Introduction to Earthquake Engineering [M]. Beijing: Seismological Press, 1992.(in Chinese))
|
[17] |
钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994,34(2): 131-136.(ZHONG Wan-xie. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology,1994,34(2): 131-136.(in Chinese))
|
[18] |
LI Jie, MEI Zhen, CHEN Jian-bing, PENG Yong-bo. Experimental investigations of stochastic control of randomly base-excited structures[J]. Advances in Structural Engineering,2012,15(11): 1963-1975.
|