Abstract:
A model of neural networks consisting of populations of perceptive neurons, interneurons and motor neurons according to the theory of stochastic phase resetting dynamics, was proposed. According to this model, dynamical characteristics of neural networks were studied under three coup ling cases, nam ely, series and parallel coup ling, series coup ling and un ilateral coupling. The results allow the structure of neural networks to be identified, and enable the basic characteristics of neural in formation processing to be described in terms of action of both the optional motor and the reflected motor. The excitation of local neural networks is caused by action of the optional motor. In particular, the excitation of neural population caused by action of the optional motor in the motor cortexis larger than that caused by action of there flected motor. It is reflected that there are more neurons participating in neural information processing and excited synchronization motion under the action of the optional motor.