Abstract:
Boundary conditions were derived to represent the continuity requirements at the boundaries of a porous solid saturated with viscous fluid.These were derived from the physically grounded principles with a mathematical check on the conservation of energy.The poroelastic solid is a dissipative one,for the presence of viscosity in inter stitial fluid.The dissipative stresses due to the viscosity of pore-fluid,are well represented in the boundary conditions.The unequal particle motions of two constituents of porous aggregate at a boundary between two solids were explained interms of drainage of pore-fluid leading to imperfect bonding.Mathematical model was derived for the partial connection of surface pores at the porous-porous interface.At this interface,the loose-contact slipping and partial pore opening/connection may dissipate a part of strain energy.Numerical example shows that,at the interface between water and oil-saturated sandstone,the modified boundary conditions do affect the energies of the waves refracting into the isotropic porous medium.