2019, 40(7): 751-767.
doi: 10.21656/1000-0887.390267
Abstract:
The traditional parallel computing of large-scale discrete elements was suitable for spherical particles. However, in natural fields or industrial applications, the granular systems commonly comprise non-spherical particles. Meanwhile, the dynamic behaviors and mechanical properties of non-spherical particles are strongly different from those of spherical particles at different spatial scales. Super-quadric elements based on the continuous function envelope were used to effectively describe the geometric shapes of irregular particles, and accurately calculate the contact forces between elements with the non-linear Newtonian method. In view of the complexity of the contact detection between non-spherical particles and the large-scale computational requirements of the discrete element method, a CUDA-GPU parallel algorithm was developed for super-quadric elements. Based on the parallel calculation of spherical particles, the rough contact list of the element envelope and the accurate contact list of the Newtonian method were established with the kernel function. Meanwhile, the parallel algorithm and the memory access mode were optimized to improve the computation efficiency. To examine the reliability of the parallel algorithm, the flow process of non-spherical particles was simulated with the discrete element method and compared with the experimental results. Furthermore, the influences of the aspect ratio and the sharpness parameter of elements on the flow characteristics of non-spherical particles were analyzed. This study provides an effective numerical method for large-scale simulation of non-spherical granular materials.