Service with cracks is the normal state of engineering structures. Due to the fluid invading into the crack, the crack surface is loaded directly, which makes the crack further expand, and even affects the safety of the structure. In the analysis of fracture problems, according to the Williams element with generalized degrees of freedom (W element), the Williams series was used to establish the displacement field of the singular zone around the crack tip, and the stress intensity factors (SIFs) can be directly obtained by solving the generalized stiffness equation with high precision and high efficiency. However, the W element needs to satisfy the free boundary condition of the crack surface in the singular zone, so it is limited in the analysis of crack surface loading. Based on the SIFs reciprocity, the loading on the crack surface is equivalent to the concentrated force on the crack surface at the periphery of the equivalent singular zone, so the loading on the crack surface in the singular zone can be avoided, and the W element can be easily used for calculation. The numerical examples show that, the size of the equivalent singular zone is 1/20 of the crack length, the suggested equivalent load coefficient P is 2.0, and the calculation accuracy of the W element meets the error limit of 1%. The equivalent treatment method for the analysis of crack surface loading in the singular zone is reasonable and universal, and overcomes the limitation on the W element in analysis of the loading problem on crack surface.