Citation: | FENG Yi-hu, LIU Shu-de, MO Jia-qi. Generalized Solution to a Class of Singularly Perturbed Problem of Nonlinear Reaction Diffusion Equation With Two Parameters[J]. Applied Mathematics and Mechanics, 2017, 38(5): 561-569. doi: 10.21656/1000-0887.370177 |
[1] |
de Jager E M, Furu J. The Theory of Singular Perturbation [M]. Amsterdam: North-Holland Publishing Co, 1996.
|
[2] |
Barbu L, Morosanu G. Singularly Perturbed Boundary-Value Problems [M]. Basel: Birkhauserm Verlag AG, 2007.
|
[3] |
Martínez S, Wolanski N. A singular perturbation problem for a quasi-linear operator satisfying the natural growth condition of Lieberman[J]. SIAM Journal on Mathematical Analysis,2009,41(1): 318-359.
|
[4] |
Kellogg R B, Kopteva N A. Singularly perturbed semilinear reaction-diffusion problem in a polygonal domain[J]. Journal of Differential Equations, 2010,248(1): 184-208.
|
[5] |
Tian C, Zhu P. Existence and asymptotic behavior of solutions for quasilinear parabolic systems[J]. Acta Applicandae Mathematicae, 2012,121(1): 157-173.
|
[6] |
Skrynnikov Y. Solving initial value problem by matching asymptotic expansions[J]. SIAM Journal on Applied Mathematics, 2012,72(1): 405-416.
|
[7] |
Samusenko P. Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations[J]. Journal of Mathematical Sciences, 2013,189(5): 834-847.
|
[8] |
MO Jia-qi, HAN Xiang-lin, CHEN Song-lin. The singularly perturbed nonlocal reaction diffusion system[J]. Acta Mathematica Scientia, 2002,22B(4): 549-556.
|
[9] |
MO Jia-qi, HAN Xiang-lin. A class of singularly perturbed generalized solution for the reaction diffusion problems[J]. Journal of Systems Science and Mathematical Sciences, 2002,22(4): 447-451.
|
[10] |
MO Jia-qi, LIN Wan-tao. A class of nonlinear singularly perturbed problems for reaction diffusion equations with boundary perturbation[J]. Acta Mathematicae Applicatae Sinica, 2006,22(1): 27-32.
|
[11] |
MO Jia-qi. A class of singularly perturbed differential-difference reaction diffusion equation[J]. Advances in Mathematics, 2009,38(2): 227-231.
|
[12] |
MO Jia-qi. Homotopic mapping solving method for gain fluency of a laser pulse amplifier[J]. Science in China(Ser G): Physics, Mechanics & Astronomy, 2009, 52(7): 1007-1070.
|
[13] |
MO Jia-qi, LIN Wan-tao. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations[J]. Journal of Systems Science and Complexity,2008,20(1): 119-128.
|
[14] |
MO Jia-qi. A singularly perturbed reaction diffusion problem for the nonlinear boundary condition with two parameters[J]. Chinese Physics B,2010,19(1): 010203.
|
[15] |
FENG Yi-hu, MO Jia-qi. The shock asymptotic solution for nonlinear elliptic equation with two parameters[J]. Mathematica Applicata, 2015,27(3): 579-585.
|
[16] |
FENG Yi-hu, MO Jia-qi. Asymptotic solution for singularly perturbed fractional order differential equation[J]. Journal of Mathematics,2016,36(2): 239-245.
|
[17] |
FENG Yi-hu, CHEN Xian-feng, MO Jia-qi. The generalized interior shock layer solution of a class of nonlinear singularly perturbed reaction diffusion problem[J]. Mathematica Applicata,2016,29(1): 161-165.
|
[18] |
冯依虎, 石兰芳, 汪维刚, 等. 一类广义非线性强阻尼扰动发展方程的行波解[J]. 应用数学和力学, 2015,36(3): 315-324.(FENG Yi-hu, SHI Lan-fang, WANG Wei-gang, et al. Traveling wave solution to a class of generalized nonlinear strong-damping disturbed evolution equations[J]. Applied Mathematics and Mechanics,2015,36(3): 315-324.(in Chinese))
|
[19] |
冯依虎, 莫嘉琪. 一类非线性非局部扰动LGH方程的孤子行波解[J]. 应用数学和力学, 2016,37(4): 426-433.(FENG Yi-hu, MO Jia-qi. Soliton travelling wave solutions to a class of nonlinear nonlocal disturbed LGH equations[J]. Applied Mathematics and Mechanics, 2016,37(4): 426-433.(in Chinese))
|