WANG Qing-qing, LI Xiao-lin. Error Analysis of the Scaled Moving Least Squares Approximation[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1289-1299. doi: 10.21656/1000-0887.370260
Citation: WANG Qing-qing, LI Xiao-lin. Error Analysis of the Scaled Moving Least Squares Approximation[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1289-1299. doi: 10.21656/1000-0887.370260

Error Analysis of the Scaled Moving Least Squares Approximation

doi: 10.21656/1000-0887.370260
Funds:  The National Natural Science Foundation of China(General Program)(11471063)
  • Received Date: 2016-08-26
  • Rev Recd Date: 2017-09-28
  • Publish Date: 2017-11-15
  • Compared with the moving least squares (MLS) approximation, the scaled moving least squares (SMLS) approximation can avoid the issue of ill-conditioned matrices involved in the MLS approximation. Error estimates of the SMLS approximation were conducted for the approximation function and its arbitrary-order derivatives. Finally, some numerical examples were given. The numerical results indicate that the SMLS approximation provides monotonic convergence and higher accuracy with higher computational stability in comparison with the MLS approximation.
  • loading
  • [1]
    Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods[J]. Mathematics of Computation,1981,37(155): 141-158.
    [2]
    Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering,1994,37(2): 229-256.
    [3]
    Atluri S N. The Meshless Method (MLPG) for Domain & BIE Discretizations [M]. Encino, CA, USA: Tech Science Press, 2004.
    [4]
    LI Xiao-lin, LI Shu-ling. Meshless boundary node methods for Stokes problems[J]. Applied Mathematical Modelling,2014,39(7): 1769-1783.
    [5]
    LI Xiao-lin, ZHU Jia-lin. A Galerkin boundary node method and its convergence analysis[J]. Journal of Computational and Applied Mathematics,2009,230(1): 314-328.
    [6]
    LI Xiao-lin. Meshless Galerkin algorithms for boundary integral equations with moving least square approximations[J]. Applied Numerical Mathematics,2011,61(12): 1237-1256.
    [7]
    LI Xiao-lin. Error estimates for the moving least-square approximation and the element-free Galerkin method in n -dimensional spaces[J]. Applied Numerical Mathematics,2016,99: 77-97.
    [8]
    LI Xiao-lin, LI Shu-ling. On the stability of the moving least squares approximation and the element-free Galerkin method[J]. Computers & Mathematics With Applications,2016,72(6): 1515-1531. doi: 10.1016/j.camwa.2016.06.047.
    [9]
    Liew K M, CHENG Yu-min, Kitipornchai S. Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems[J]. International Journal for Numerical Methods in Engineering,2006,65(8): 1310-1332.
    [10]
    LI Xiao-lin, CHEN Hao, WANG Yang. Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method[J]. Applied Mathematics & Computation,2015,262: 56-78.
    [11]
    Mirzaei D. Analysis of moving least squares approximation revisited[J]. Journal of Computational & Applied Mathematics,2015,282: 237-250.
    [12]
    Armentano M G, Durán R G. Error estimates for moving least square approximations[J].Applied Numerical Mathematics,2001,37(3): 397-416.
    [13]
    Zuppa C. Good quality point sets and error estimates for moving least square approximations[J]. Applied Numerical Mathematics,2003,47(3/4): 575-585.
    [14]
    程荣军. 无网格方法的误差估计和收敛性研究[D]. 博士学位论文.上海: 上海大学, 2007.(CHENG Rong-jun. Researches on the convergence and error analysis of meshless methods[D]. PhD Thesis. Shanghai: Shanghai University, 2007.(in Chinese))
    [15]
    REN Hong-ping, PEI Kai-yan, WANG Li-ping. Error analysis for moving least squares approximation in 2D space[J]. Applied Mathematics & Computation,2014,238: 527-546.
    [16]
    Sun F X, Wang J F, Cheng Y M, et al. Error estimates for the interpolating moving least-squares method in n -dimensional space[J]. Applied Numerical Mathematics,2015,98: 79-105.
    [17]
    Mathews J H, Fink K D. Numerical Methods Using MATLAB [M]. 4th ed. Prentice Hall, Englewood Cliffs, 2004.
    [18]
    孙新志, 李小林. 复变量移动最小二乘近似在Sobolev空间中的误差估计[J]. 应用数学和力学, 2016,37(4): 416-425.(SUN Xin-zhi, LI Xiao-lin. Error estimates for the complex variable moving least square approximation in Sobolev spaces[J]. Applied Mathematics and Mechanics,2016,37(4): 416-425.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1220) PDF downloads(657) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return