CHEN Chang-rong. Characteristics and Generation of Interface J integrals in Layered Elastic Materials[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1155-1165. doi: 10.21656/1000-0887.370270
Citation: CHEN Chang-rong. Characteristics and Generation of Interface J integrals in Layered Elastic Materials[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1155-1165. doi: 10.21656/1000-0887.370270

Characteristics and Generation of Interface J integrals in Layered Elastic Materials

doi: 10.21656/1000-0887.370270
Funds:  The National Natural Science Foundation of China(51175321)
  • Received Date: 2016-09-05
  • Rev Recd Date: 2016-12-21
  • Publish Date: 2017-10-15
  • When a crack in a layered elastic material is perpendicular to the interface, the Jintegral along path Г surrounding the crack tip can be separated into 2 parts: JГ=Jtip+Jint, where Jtip means the J integral generated by the crack tip, and Jint the J integral generated by the interface enclosed by Г. The J integral generated by the crack tip is path-independent, and its physical meaning is the energy release rate of crack growth; the J integral generated by the interface is pathdependent, and has no relation to the energy release rate of crack growth. Due to the existence of the interface J integral, JГ loses the path-independent property and has no real physical meaning. To better understand the physical meaning and limitations of the J integrals in inhomogeneous materials, the generation and characteristics of the interface J-integrals in layered elastic materials were analyzed. The results show that, for a layered elastic material composed of different homogeneous materials, the interface J-integrals are generated by the jumps of the strain energy density at the interfaces, and the jumps of the residual stresses and Young’s moduli at the interfaces would result in the jump of the elastic strain energy density. Moreover, offset effects exist between interface J integrals.
  • loading
  • [1]
    Griffith A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London, 1921,221: 163-198.
    [2]
    Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics,1968,35(2): 379-386.
    [3]
    Sun C T, Wu X X. On the J-integral in periodically layered composites[J]. International Journal of Fracture,1996,78(1): 89-100.
    [4]
    Simha N K, Fischer F D, Shan G X, et al. J-integral and crack driving force in elastic-plastic materials[J]. Journal of the Mechanics and Physics of Solids,2008,56(9): 2876-2895.
    [5]
    Simha N K, Fischer F D, Kolednik O, et al. Inhomogeneity effects on the crack driving force in elastic and elastic-plastic materials[J]. Journal of the Mechanics and Physics of Solids,2003,51(1): 219-240.
    [6]
    Fischer F D, Predan J, Kolednik O, et al. Application of material forces to fracture of inhomogeneous materials: illustrative examples[J]. Archive of Applied Mechanics,2007,77(2): 95-112.
    [7]
    Fischer F D, Simha N K, Predan J, et al. On configurational forces at boundaries in fracture mechanics[J]. International Journal of Fracture,2012,174(1): 61-74.
    [8]
    Fischer F D, Predan J, Muller R, et al. On problems with the determination of the fracture resistance for materials with spatial variations of the Young’s modulus[J]. International Journal of Fracture,2014,190(1): 23-38.
    [9]
    Kolednik O, Predan J, Gubeljak N, et al. Modeling fatigue crack growth in biomaterial specimen with the configurational force concept[J]. Materials Science and Engineering A,2009,519(1/2): 172-183.
    [10]
    Riemelmoser O, Pippan R. The J-integral at Dugdale cracks perpendicular to interfaces of materials with dissimilar yield stresses[J]. International Journal of Fracture,2000,103(4): 397-418.
    [11]
    陈昌荣. 层状陶瓷的材料力和裂纹力评估方法[J]. 应用数学和力学, 2016,37(7): 748-755.(CHEN Chang-rong. A method for evaluating material forces and crack forces in ceramic laminates[J]. Applied Mathematics and Mechanics,2016,37(7): 748-755.(in Chinese))
    [12]
    Shi W, Kuang Z B. J-integral of dissimilar anisotropic media[J]. International Journal of Fracture,1999,96(4): 37-42.
    [13]
    王利民, 陈浩然, 徐世烺. J积分在多层介质中的守恒性和其利用[J]. 应用数学和力学, 2001,22(10): 1097-1104.(WANG Li-min, CHEN Hao-ran, XU Shi-lang. Conservation law and application of J-integral in multi-materials[J]. Applied Mathematics and Mechanics,2001,22(10): 1097-1104.(in Chinese))
    [14]
    Rask M, Sorensen B F. Determination of the J integral for laminated double cantilever beam specimens: the curvature approach[J]. Engineering Fracture Mechanics,2012,96(1): 37-48.
    [15]
    Eshelby J D. The elastic energy-momentum tensor[J]. Journal of Elasticity,1975,5(3): 321-335.
    [16]
    Eshelby J D. Energy relations and the energy-momentum tensor in continuum mechanics[C]// Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids . Berlin, Heidelbergs: Springer-Verlag, 1999: 82-119.
    [17]
    陈昌荣. 适合裂尖穿越界面行为分析的断裂模拟方法研究[J]. 应用数学和力学, 2014,35(9): 979-985.(CHEN Chang-rong. On the fracture modeling method for crack tips penetrating elastic interfaces[J]. Applied Mathematics and Mechanics,2014,35(9): 979-985.(in Chinese))
    [18]
    Markenscoff X. Driving forces on phase boundaries: the Eshelby principle for an interface[J]. International Journal of Fracture,2010,165(2): 223-227.
    [19]
    Bermejo R, Torres Y, Sanchez-Herencia A J, et al. Residual stresses, strength and toughness of laminates with different layer thickness[J]. Acta Materialia, 2006,54(18): 4745-4757.
    [20]
    Chen C R, Pascual J, Fischer F D, et al. Prediction of the fracture toughness of a ceramic multilayer composite: modeling and experiments[J]. Acta Materialia,2007,55(2): 409-421.
    [21]
    Chen C R, Bermejo R, Kolednik O. Numerical analysis on special cracking phenomena of residual compressive inter-layer in ceramic laminates[J]. Engineering Fracture Mechanics,2010,77(13): 2567-2576.
    [22]
    钟万勰. 力学与对称——离散: 祖冲之方法论[J]. 应用数学和力学,2016,37(1): i-ii.(ZHONG Wan-xie. Mechanics and symmetry—discretization: Zu-type methodology[J]. Applied Mathematics and Mechanics,2016,37(1): i-ii.(in Chinese))
    [23]
    范镜泓, 陈海波. 非均质材料力学研究进展: 热点、 焦点和生长点[J]. 力学进展, 2011,41(5): 615-636.(FAN Jing-hong, CHEN Hai-bo. Advances in heterogeneous material mechanics: cutting-edge and growing points[J]. Advances in Mechanics,2011,41(5): 615-636.(in Chinese))
    [24]
    张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应[J]. 金属学报, 2014,50(2): 169-182.(ZHANG Jin-yu, LIU Gang, SUN Jun. Size effects on deformation and fracture behavior of nanostructured metallic multilayers[J]. Acta Metallurgica Sinica,2014,50(2): 169-182.(in Chinese))
    [25]
    孙军, 张金钰, 吴凯, 等. Cu系纳米金属多层膜微柱体的变形与损伤及其尺寸效应[J]. 金属学报, 2016,52(10): 1249-1258.(SUN Jun, ZHANG Jin-yu, WU Kai, et al. Size effects on the deformation and damage of Cu-based metallic nanolayered micro-pillars[J]. Acta Metallurgica Sinica,2016,52(10): 1249-1258.(in Chinese))
    [26]
    Beyerlein I J, Demkowicz M J, Misra A, et al. Defect-interface interactions[J]. Progress in Materials Science,2015,74: 125-210.
    [27]
    Guo L C, Kitamura T, Yan Y B, et al. Fracture mechanics investigation on crack propagation in the nano-multilayered materials[J]. International Journal of Solids and Structures,2015,64/65: 208-220.
    [28]
    Huang K, Guo L C, Yan Y B, et al. Investigation on the competitive fracture behavior in nano-multilayered structures[J]. International Journal of Solids and Structures,2016,92/93: 45-53.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (955) PDF downloads(612) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return