LI Jue-min, LU Ze-qi, CHEN Li-qun. An Investigation on Nonlinear-Damping and Nonlinear-Stiffness Vibration Isolation Systems Under Random Excitations[J]. Applied Mathematics and Mechanics, 2017, 38(6): 613-621. doi: 10.21656/1000-0887.370277
Citation: LI Jue-min, LU Ze-qi, CHEN Li-qun. An Investigation on Nonlinear-Damping and Nonlinear-Stiffness Vibration Isolation Systems Under Random Excitations[J]. Applied Mathematics and Mechanics, 2017, 38(6): 613-621. doi: 10.21656/1000-0887.370277

An Investigation on Nonlinear-Damping and Nonlinear-Stiffness Vibration Isolation Systems Under Random Excitations

doi: 10.21656/1000-0887.370277
Funds:  The National Natural Science Foundation of China (11502135; 11572182)
  • Received Date: 2016-09-08
  • Rev Recd Date: 2014-04-17
  • Publish Date: 2017-06-15
  • Both nonlinear damping and nonlinear stiffness were introduced in vibration isolation systems under random excitations to improve the isolation performance. The nonlinear damping and nonlinear stiffness were realized through the geometric arrangement of the horizontal springs and horizontal dampers. The performance of the nonlinear vibration isolator under random excitation was evaluated with the equivalent FokkerPlanckKolmogorov (FPK) equation transformed by the nonlinear stochastic vibration equation. The effects of the nonlinearity introduced in stiffness and damping on the transmissibility and its probability were studied. It is found that, for high levels of random excitations, the damping nonlinearity brings larger reduction of the random vibration response, and the gap between the linear and the nonlinear dampings is enlarged; however, for low levels of random excitations, the nonlinear damping has less efficacy than the linear damping.
  • loading
  • [1]
    Rivin E I. Passive Vibration Isolation [M]. New York: ASME Press, 2003.
    [2]
    Mead D J. Passive Vibration Control [M]. London: John Wiley & Sons Ltd, 1998.
    [3]
    Piersol A G, Paez T L. Harris’ Shock and Vibration Handbook [M]. 6th ed. New York: McGraw-Hill, 2009.
    [4]
    Ibrahim R A. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound and Vibration,2008,314(3/5): 371-452.
    [5]
    JU Li-wen, Blair D G. Low resonant frequency cantilever spring vibration isolator for gravitational wave detectors[J]. Review of Scientific Instruments,1994,65(11): 3482-3488.
    [6]
    Virgin L N, Santillan S T, Plaut R H. Vibration isolation using extreme geometric nonlinearity[J]. Journal of Sound and Vibration,2008,315(3): 721-731.
    [7]
    Alabuzhev P, Gritchin A, Kim L, et al. Vibration Protecting and Measuring Systems With Quasi-Zero Stiffness [M]. New York: Hemisphere Publishing Corporation, 1989.
    [8]
    Carrella A, Brennan M J, Waters T P, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness[J]. International Journal of Mechanical Sciences,2012,55(1): 22-29.
    [9]
    Huang X Ch, Liu X T, Hua H X. Effects of stiffness and load imperfection on the isolation performance of a high-static-low-dynamic-stiffness non-linear isolator under base displacement excitation[J]. International Journal of Non-Linear Mechanics,2014,65: 32-43.
    [10]
    Ravindra B, Mallik A K. Hard Duffing-type vibration isolator with combined Coulomb and viscous damping[J]. International Journal of Non-Linear Mechanics,1993,28(4): 427-440.
    [11]
    Ravindra B, Mallik A K. Chaotic response of a harmonically excited mass on an isolator with non-linear stiffness and damping characteristics[J]. Journal of Sound and Vibration,1995,182(3): 345-353.
    [12]
    Ho C, Lang Z, Billings S A. A frequency domain analysis of the effects of nonlinear damping on the Duffing equation[J]. Mechanical Systems and Signal Processing,2014,45(1): 49-67.
    [13]
    Ho C, Lang Z, Billings S A. Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities[J]. Journal of Sound and Vibration,2014,333(12): 2489-2504.
    [14]
    Kirk C L. Non-linear random vibration isolators[J]. Journal of Sound and Vibration,1990,124(1): 157-182.
    [15]
    Le T D, Ahn K K. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat[J]. Journal of Sound and Vibration,2011,330(26): 6311-6335.
    [16]
    李倩, 刘俊卿, 陈诚诚. 随机激励下四自由度车辆-道路耦合系统动力分析[J]. 应用数学和力学, 2015,36(5): 460-473.(LI Qian, LIU Jun-qing, CHEN Cheng-cheng. Dynamic analysis of the 4-DOF vehicle-road coupling system under random excitation[J]. Applied Mathematics and Mechanics,2015,36(5): 460-473.(in Chinese))
    [17]
    赵岩, 李明武, 林家浩, 等. 陀螺系统随机振动分析的辛本征展开方法[J]. 应用数学和力学, 2015,36(5): 449-459.(ZHAO Yan, LI Ming-wu, LIN Jia-hao, et al. Symlpectic eigenspace expansion for the random vibration analysis of gyroscopic systems[J]. Applied Mathematics and Mechanics,2015,36(5): 449-459.(in Chinese))
    [18]
    庞辉, 彭威, 原园. 随机激励下重载车辆空气悬架参数多目标优化[J]. 振动与冲击, 2014,〖STHZ〗 33(6): 156-160, 178.(PANG Hui, PENG Wei, YUAN Yuan. Multi-objective optimization of pneumatic suspension parameters for heavy vehicle under random excitation[J]. Journal of Vibration and Shock, 2014,33(6): 156-160, 178.(in Chinese))
    [19]
    董满生, 李满, 林志, 等. 随机地震激励下水中悬浮隧道的动力响应[J]. 应用数学和力学, 2014,35(12): 1320-1329.(DONG Man-sheng, LI Man, LIN Zhi, et al. Dynamic response of the submerged floating tunnel under random seismic excitation[J]. Applied Mathematics and Mechanics,2014,35(12): 1320-1329.(in Chinese))
    [20]
    静行, 刘真真, 原方. 随机激励下基于ICA的结构模态参数识别[J]. 噪声与振动控制, 2014,34(6): 178-183.(JING Hang, LIU Zhen-zhen, YUAN Fang. Structural modal parameter identification based on ICA under random excitation[J]. Noise and Vibration Control,2014,34(6): 178-183.(in Chinese))
    [21]
    何青, 毛新华, 褚东亮. 随机激励下双稳态压电振动发电机的振动特性[J]. 噪声与振动控制, 2015,35(2): 36-40.(HE Qing, MAO Xin-hua, CHU Dong-liang. Dynamic characteristics of a bistable piezoelectric vibration generator under random excitation[J]. Noise and Vibration Control,2015,35(2): 36-40.(in Chinese))
    [22]
    Yu J S, Cai G Q, Lin Y K. A new path integration procedure based on Gauss-Legendre scheme[J]. International Journal of Non-Linear Mechanics,1997,32(4): 759-768.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1843) PDF downloads(1311) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return