Citation: | GE Zhi-xin, CHEN Xian-jiang, CHEN Song-lin. A Class of 2-DOF Coupled Systems With Fractional-Order Derivatives[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1300-1308. doi: 10.21656/1000-0887.370333 |
[1] |
胡海岩. 机械振动基础[M]. 北京: 北京航空航天大学出版社, 2005.(HU Hai-yan. Fundamentals of Mechanical Vibration [M]. Beijing: Beihang University Press, 2005.(in Chinese))
|
[2] |
Nayfeh A H. Introduction to Perturbation Techniques [M]. Shanghai: Shanghai Translation Publishing House, 1990.〖JP〗
|
[3] |
刘灿昌, 岳书常, 许英姿, 等. 参数激励非线性振动时滞反馈最优化控制[J]. 振动与冲击, 2015,34(20): 6-9.(LIU Can-chang, YUE Shu-chang, XU Ying-zi, et al. Optimal control of parametric excitated nonlinear vibration system with delayed linear and nonlinear feedback controllers[J]. Journal of Vibration and Shock,2015,34(20): 6-9.(in Chinese))
|
[4] |
鲍四元, 邓子辰. 分数阶振子方程基于变分迭代的近似解析解序列[J]. 应用数学和力学, 2015,36(1): 48-60.(BAO Si-yuan, DENG Zi-chen. The approximate analytical solution sequence for fractional oscillation equations based on the fractional variational iteration method[J]. Applied Mathematics and Mechanics,2015,36(1): 48-60.(in Chinese))
|
[5] |
张晓棣, 陈文. 三种分形和分数阶导数阻尼振动模型的比较研究[J]. 固体力学学报, 2009,30(5): 496-503.(ZHANG Xiao-di, CHEN Wen. Comparison of three fractal and fractional derivative damped oscillation models[J]. Chinese Journal of Solid Mechanics,2009,30(5): 496-503.(in Chinese))
|
[6] |
HU Shuai, CHEN Wen, GOU Xiao-fan. Modal analysis of fractional derivative damping model of frequency-dependent viscoelastic soft matter[J]. Advances in Vibration Engineering,2011,10(3): 187-196.
|
[7] |
CAI Wei, CHEN Wen, ZHANG Xiao-di. A Matlab toolbox for positive fractional time derivative modeling of arbitrarily frequency-dependent viscosity[J]. Journal of Vibration and Control,2014,20(7): 1009-1016.
|
[8] |
Leung A Y T, Gou Z J, Yang H X. Transition curves and bifurcations of a class of fractional Mathieu-type equations [J]. International Journal of Bifurcation and Chaos,2012,22(11): 1250275.
|
[9] |
Mesbahi A, Haeri M, Nazari M, et al. Fractional delayed damped Mathieu equation[J]. International Journal of Control,2015,88(3): 622-630.
|
[10] |
陈林聪, 李海锋, 李钟慎, 等. 宽带噪声激励下含分数阶导数的Duffing-van del Pol振子的稳态响应[J]. 中国科学: 物理学 力学 天文学, 2013,43(5): 670-677.(CHEN Lin-cong, LI Hai-feng, LI Zhong-shen, et al. Stationary response of Duffing-van del Pol oscillator with fractional derivative under wide-band noise excitations[J]. Science China: Physics, Mechanics & Astronomy, 2013,43(5): 670-677.(in Chinese))
|
[11] |
杨建华, 刘厚广, 程刚. 一类五次方振子系统的叉形分叉及振动共振研究[J]. 物理学报, 2013,62(18): 180503.(YANG Jian-hua, LIU Hou-guang, CHENG Gang. The pitchfork bifurcation and vibrational resonance in a quintic oscillator[J]. Acta Physica Sinica,2013,62(18): 180503.(in Chinese))
|
[12] |
张路, 谢天婷, 罗懋康. 双频信号驱动含分数阶内、外阻尼Duffing振子的振动共振[J]. 物理学报, 2014,63(1): 010506.(ZHANG Lu, XIE Tian-ting, LUO Meng-kang. Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals[J]. Acta Physica Sinica,2014,63(1): 010506.(in Chinese))
|
[13] |
韦鹏, 申永军, 杨绍普. 分数阶van der Pol振子的超谐共振[J]. 物理学报, 2014,63(1): 010503.(WEI Peng, SHEN Yong-jun, YANG Shao-pu. Super-harmonic resonance of fractional-order van der Pol oscillator[J]. Acta Physica Sinica,2014,63(1): 010503.(in Chinese))
|
[14] |
申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析[J]. 物理学报, 2012,61(11): 110505.(SHEN Yong-jun, YANG Shao-pu, XING Hai-jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative[J]. Acta Physica Sinica,2012,61(11): 110505.(in Chinese))
|
[15] |
申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析(Ⅱ)[J]. 物理学报, 2012,61(15): 150503.(SHEN Yong-jun, YANG Shao-pu, XING Hai-jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative(Ⅱ)[J]. Acta Physica Sinica,2012,61(15): 150503.(in Chinese))
|
[16] |
葛志新, 陈咸奖. 一类含有两参数的小迟滞方程的渐近解[J]. 应用数学学报, 2014,37(3): 407-413.(GE Zhi-xin, CHEN Xian-jiang. The asymptotic solution of a class of small delay equations with two parameters[J]. Acta Mathematicae Applicatae Sinica,2014,37(3): 407-413.(in Chinese))
|