Citation: | YANG Yu-hong, LI Fei. Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2017, 38(5): 526-538. doi: 10.21656/1000-0887.380012 |
[1] |
Ehrgott M. Multicriteria Optimization [M]. 2nd ed. Berlin: Springer, 2005.
|
[2] |
Jahn J. Vector Optimization: Theory, Applications, and Extensions [M]. 2nd ed. Berlin: Springer-Verlag, 2011.
|
[3] |
戎卫东, 杨新民. 向量优化及其若干进展[J]. 运筹学学报, 2014,18(1): 9-38.(RONG Wei-dong, YANG Xin-min. Vector optimization and its developments[J]. Operations Research Transactions,2014,18(1): 9-38.(in Chinese))
|
[4] |
Goberna M A, López M A. Linear Semi-Infinite Optimization [M]. Chichester: John Wiley & Sons, 1998.
|
[5] |
Reemtsen R, Rückmann J-J. Semi-Infinite Programming [M]. Dordrecht: Springer Science, 1998.
|
[6] |
Caristi G, Ferrara M, Stefanescu A. Semi-infinite multiobjective programming with generalized invexity[J]. Mathematical Reports,2010,12(62): 217-233.
|
[7] |
Glover B M, Jeyakumar V, Rubinov A M. Dual conditions characterizing optimality for convex multi-objective programs[J]. Mathematical Programming,1999,84(1): 201-217.
|
[8] |
Chuong T D, Kim D S. Nonsmooth semi-infinite multiobjective optimization problems[J].Journal of Optimization Theory and Applications,2014,160(3): 748-762.
|
[9] |
Chuong T D, Yao J C. Isolated and proper efficiencies in semi-infinite vector optimization problems[J]. Journal of Optimization Theory and Applications,2014,162(2): 447-462.
|
[10] |
Kanzi N, Nobakhtian S. Optimality conditions for nonsmooth semi-infinite multiobjective programming[J]. Optimization Letters,2014,8(4): 1517-1528.
|
[11] |
Kanzi N. On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data[J]. Optimization Letters,2015,9(6): 1121-1129.
|
[12] |
Caristi G, Kanzi N. Karush-Kuhn-Tuker type conditions for optimality of non-smooth multiobjective semi-infinite programming[J]. International Journal of Mathematical Analysis,2015,9(39): 1929-1938.
|
[13] |
Kanzi N. Karush-Kuhn-Tucker types optimality conditions for non-smooth semi-infinite vector optimization problems[J]. Journal of Mathematical Extension,2015,9(4): 45-56.
|
[14] |
Piao G R, Jiao L G, Kim D S. Optimality conditions in nonconvex semi-infinite multiobjective optimization[J]. Journal of Nonlinear and Convex Analysis,2016,17(1): 167-175.
|
[15] |
Golestani M, Nobakhtian S. Nonsmooth multiobjective programming: strong Kuhn-Tucker conditions[J]. Positivity,2013,17(3): 711-732.
|
[16] |
Clarke F H. Optimization and Nonsmooth Analysis [M]. Philadelphia: SIAM, 1990.
|
[17] |
Kanniapan P. Necessary conditions for optimality of nondifferentiable convex multiobjective programming[J]. Journal of Optimization Theory and Applications,1983,40(2): 167-174.
|
[18] |
Hanson M A. On sufficiency of the Kuhn-Tucher conditions[J]. Journal of Mathematical Analysis and Applications,1981,80(2): 545-550.
|
[19] |
Craven D. Invex functions and constrained local minima[J]. Bulletin of the Australian Mathematical Society,1981,24(3): 357-366.
|
[20] |
Hanson M A, Mond B. Further generalization of convexity in mathematical programming[J]. Journal of Information and Optimization Sciences,1982,3(1): 25-32.
|
[21] |
Yang X M, Yang X Q, Teo K L. Generalized invexity and generalized invariant monotonicity[J]. Journal of Optimization Theory and Applications,2003,117(3): 607-625.
|
[22] |
彭再云, 汪达成. 强预不变凸函数的新性质及应用[J]. 重庆交通大学学报(自然科学版), 2008,27(5): 839-842.(PENG Zai-yun, WANG Da-cheng. New characteristics and application of strictly pre-invex functions[J]. Journal of Chongqing Jiaotong University(Natural Science),2008,27(5): 839-842.(in Chinese))
|
[23] |
彭再云, 李永红. 半严格- G -半预不变凸性与最优化[J]. 应用数学和力学, 2013,34(8): 836-845.(PENG Zai-yun, LI Yong-hong. Semistrict-G-semi-preinvexity and optimization[J].Applied Mathematics and Mechanics,2013,34(8): 836-845.(in Chinese))
|
[24] |
Yang X M, Yang X Q, Teo K L, et al. Second order symmetric duality in non-differentiable multiobjective programming with F-convexity[J]. European Journal of Operational Research,2005,164(2): 406-416.
|
[25] |
Goberna M A, Guerra-Vazquez F, Todorov M I. Constraint qualifications in convex vector semi-infinite optimization[J]. European Journal of Operational Research,2016,249(1): 32-40.
|