LIAO Shu, YANG Wei-ming. An Epidemic Model With Dual Delays in View of Media Coverage[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1412-1424. doi: 10.21656/1000-0887.380025
Citation: LIAO Shu, YANG Wei-ming. An Epidemic Model With Dual Delays in View of Media Coverage[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1412-1424. doi: 10.21656/1000-0887.380025

An Epidemic Model With Dual Delays in View of Media Coverage

doi: 10.21656/1000-0887.380025
Funds:  The National Natural Science Foundation of China(11401059)
  • Received Date: 2017-01-19
  • Rev Recd Date: 2017-04-23
  • Publish Date: 2017-12-15
  • A multi-delay epidemic model in view of media coverage was established and analyzed. By means of the corresponding characteristic equation roots, the stability of the system was studied under 5 different time delay conditions, and the existence of the Hopf bifurcation was discussed. Furthermore, for a basic reproduction number greater than 1, the system’s uniform persistence was proved based on the persistence theory. At last, numerical simulations were conducted to verify the analytical predictions and evaluate the effects of media coverage and time delays on the control of emerging infectious diseases.
  • loading
  • [1]
    Liu R S, Wu J H, Zhu H P. Media/psychological impact on multiple outbreaks of emerging infectious diseases[J]. Computational and Mathematical Methods in Medicine, 2007,8(3):153-164.
    [2]
    Misra A K, Sharma A, Shukla J B. Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases[J]. Mathematical and Computer Modeling,2011,53(5/6): 1221-1228.
    [3]
    Cui J A, Sun Y H, Zhu H P. The impact of media on the control of infectious diseases[J]. Journal of Dynamics and Differential Equations,2007,20(1): 31-53.
    [4]
    Collinson S, Khan K, Heffernan J M. The effects of media reports on disease spread and important public health measurements[J]. PLoS ONE,2015,10(11): 1-21.
    [5]
    Misra A K, Sharma A, Singh V. Effect of awareness programs in controlling the prevalence of an epidemic with time delay[J]. Journal of Biological Systems,2011,19(2): 389-402.
    [6]
    刘玉英, 肖燕妮. 一类受媒体影响的传染病模型的研究[J]. 应用数学和力学, 2013,34(4): 399-407.( LIU Yu-ying, XIAO Yan-ni. An epidemic model with saturated media/psychological impact[J]. Applied Mathematics and Mechanics,2013,34(4): 399-407. (in Chinese))
    [7]
    Sun C, Yang W, Arinoa J, et al. Effect of media induced social distancing on disease transmission in a two patch setting[J]. Mathematical Biosciences,2011,230(2): 87-95.
    [8]
    张素霞, 周义仓. 考虑媒体作用的传染病模型的分析与控制[J]. 工程数学学报, 2013,30(3): 416-426.(ZHANG Su-xia, ZHOU Yi-cang. Analysis and control of an epidemic model with media influence[J]. Chinese Journal of Engineering Mathematics,2013,30(3): 416-426. (in Chinese))
    [9]
    Greenhalgh D, Rana S, Samanta S, et al. Awareness programs control infectious disease-multiple delay induced mathematical model[J]. Applied Mathematics and Computation,2015,251: 539-563.
    [10]
    Olowokure B, Odedere O, Elliot A J, et al. Volume of print media coverage and diagnostic testing for influenza A(H1N1)pdm09 virus during the early phase of the pandemic[J]. Journal of Clinical Virology,2012,55(1): 75-78.
    [11]
    Tchuenche J M, Bauch C T. Dynamics of an infectious disease where media coverage influences transmission[J]. ISRN Biomath,2012,2012(1). doi: 10.5402/2012/581274.
    [12]
    Funk S, Jansen V A. The talk of the town: modelling the spread of information and changes in behaviour[M]// Manfredi P, D’Onofrio A, ed. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases.New York: Springer, 2012: 93-102.
    [13]
    Liu W. A SIRS epidemic model incorporating media coverage with random perturbation[J]. Abstract and Applied Analysis,2013,2013(2): 764-787.
    [14]
    Freedman H I, So J W H. Global stability and persistence of simple food chains[J]. Mathematical Biosciences,1985,76(1): 69-86.
    [15]
    Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences,2002,180(1/2): 29-48.
    [16]
    Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics [M]. Mathematics and Its Applications.Vol74. Dordrecht: Springer, 1992.
    [17]
    Hale J K. Theory of Functional Differential Equations [M]. Applied Mathematical Sciences. Vol3. New York: Spring-Verlag, 1977.
    [18]
    Hale J K, Waltman P. Persistence in infinite-dimensional system[J]. SIAM Journal on Mathematical Analysis,1989,20(2): 388-396.
    [19]
    Lamb K E, Greenhalgh D, Robertson C. A simple mathematical model for genetic effects in pneumococcal carriage and transmission[J]. Journal of Computational & Applied Mathematics,2011,235(7): 1812-1818.
    [20]
    Zhang Q, Arnaoutakis K, Murdoch C, et al. Mucosal immune responses to capsular pneumococcal polysaccharides in immunized preschool children and controls with similar nasal pneumococcal colonization rates[J]. Pediatric Infectious Disease Journal,2004,23(4): 307-313.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1273) PDF downloads(715) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return