EBURILITU, FENG Lu, ALATANCANG. Analytical Bending Solutions of Clamped Orthotropic Rectangular Thin Plates With the Symplectic Superposition Method[J]. Applied Mathematics and Mechanics, 2018, 39(3): 311-323. doi: 10.21656/1000-0887.380092
Citation: EBURILITU, FENG Lu, ALATANCANG. Analytical Bending Solutions of Clamped Orthotropic Rectangular Thin Plates With the Symplectic Superposition Method[J]. Applied Mathematics and Mechanics, 2018, 39(3): 311-323. doi: 10.21656/1000-0887.380092

Analytical Bending Solutions of Clamped Orthotropic Rectangular Thin Plates With the Symplectic Superposition Method

doi: 10.21656/1000-0887.380092
Funds:  The National Natural Science Foundation of China(11362011;11371185;11761029)
  • Received Date: 2017-04-10
  • Rev Recd Date: 2017-05-04
  • Publish Date: 2018-03-15
  • The orthotropic rectangular thin plate equations were transformed into the Hamiltonian system, and the corresponding infinite dimensional Hamiltonian operator was obtained with the method of separation of variables. Then the eigenvalues and corresponding eigenfunctions of the Hamiltonian operator were calculated, and the eigenfunction system was proved to be of symplectic orthogonality and completeness. Finally, with the symplectic superposition method, the analytical bending solutions of fully clamped orthotropic rectangular thin plates were presented. The comparison between the analytical solutions and the numerical examples shows the correctness of the proposed method.
  • loading
  • [1]
    ZIENKIEWICZ O C, CHEUNG Y K. The finite element method for analysis of elastic isotropic and orthotropic slabs[J]. Proceedings of the Institution of Civil Engineers,1964,28(4): 471-488.
    [2]
    秦雅菲, 张伟星, 张其林. 无单元法求解正交各向异性板自由振动问题[J]. 力学季刊, 2006,27(1): 153-161.(QIN Yafei, ZHANG Weixing, ZHANG Qilin. Element free method in vibration problem of anisotropic plates[J]. Chinese Quarterly of Mechanics, 2006,27(1): 153-161.(in Chinese))
    [3]
    LI Rui, ZHONG Yang, TIAN Bin, et al. On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates[J]. Applied Methematics Letters,2009,22(12): 1821-1827.
    [4]
    王春玲, 高典, 刘俊卿. 横观各向同性弹性半空间地基上四边自由各向异性矩形薄板弯曲解析解[J]. 力学季刊, 2015,36(1): 95-104.(WANG Chunling, GAO Dian, LIU Junqing. Analytical solution of bending anisotropic rectangular plates with four free edges on the transversely isotropic elastic half-space[J]. Chinese Quarterly of Mechanics,2015,36(1): 95-104.(in Chinese))
    [5]
    钟万勰. 分离变量法与哈密尔顿体系[J]. 计算结构力学及其应用, 1991,8(3): 229-240.(ZHONG Wanxie. Method of separation of variables and Hamiltonian system[J]. Computational Structural Mechanics and Applications,1991,8(3): 229-240.(in Chinese))
    [6]
    钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.(ZHONG Wanxie. A New Systematic Methodology for Theory of Elasticity [M]. Dalian: Dalian University of Technology Press, 1995.(in Chinese))
    [7]
    LIM C W, XU Xinsheng. Symplectic elasticity: theory and applications[J]. Applied Mechanics Reviews,2010,63(5): 050802. DOI: 10.1115/1.4003700.
    [8]
    张宇, 邓子辰, 赵鹏. 辛体系下倾斜碳纳米管阵列波导研究[J]. 应用数学和力学, 2016,37(2): 127-137.(ZHANG Yu, DENG Zichen, ZHAO Peng. Study of THz wave propagation in tilted carbon nanotube arrays based on symplectic formulation[J]. Applied Mathematics and Mechanics,2016,37(2): 127-137.(in Chinese))
    [9]
    YAO Weian, ZHONG Wanxie, LIM C W. Symplectic Elasticity [M]. Singapore: World Scientific Publishing, 2009.
    [10]
    ZHOU Z H, WONG K W, XU X S, et al. Natural vibration of circular and annular thin plates by Hamiltonian approach[J]. Journal of Sound and Vibration,2011,330(5): 1005-1017.
    [11]
    YAO Weian, HU Xiaofei, XIAO Feng. Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation[J]. Acta Mechanica Sinica,2011,27(6): 929-937.
    [12]
    LIU Yuemei, LI Rui. Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach[J]. Applied Methematical Modelling,2010,34(4): 856-865.
    [13]
    WANG Bo, LI Peng, LI Rui. Symplectic superposition method for new analytic buckling solutions of rectangular thin plates[J]. International Journal of Mechanical Sciences,2016,119: 432-441.
    [14]
    LI Rui, TIAN Yu, WANG Pengcheng, et al. New analytic free vibration solutions of rectangular thin plates resting on multiple point supports[J]. International Journal of Mechanical Sciences,2016,110: 53-61.
    [15]
    LI Rui, WANG Bo, LI Gang, et al. Hamiltonian system-based analytic modeling of the free rectangular thin plates’ free vibration[J]. Applied Mathematical Modelling,2016,40(2): 984-992.
    [16]
    额布日力吐. 无穷维Hamilton算子特征函数系的完备性及其在弹性力学中的应用[D]. 博士学位论文. 呼和浩特: 内蒙古大学, 2011.(EBURILITU. Completeness of the eigenfunction systems of infinite dimensional Hamiltonian operators and its applications in elasticity[D]. PhD Thesis. Hohhot: Inner Mongolia University, 2011.(in Chinese))
    [17]
    PAN Baofeng, LI Rui, SU Yewang, et al. Analytical bending solutions of clamped rectangular thin plates resting on elastic foundations by the symplectic superposition method[J]. Applied Mathematics Letters,2013,26(3): 355-361.
    [18]
    BHASKAR K, KAUSHIK B. Simple and exact series solutions for flexure of orthotropic rectangular plates with any combination of clamped and simply supported edges[J]. Composite Structures,2004,63(1): 63-68.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1534) PDF downloads(528) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return