LI Jiaorui, ZHANG Yanxia. Dynamic Cycle Analysis of a Solow Model With Time Delays[J]. Applied Mathematics and Mechanics, 2018, 39(3): 334-342. doi: 10.21656/1000-0887.380184
Citation: LI Jiaorui, ZHANG Yanxia. Dynamic Cycle Analysis of a Solow Model With Time Delays[J]. Applied Mathematics and Mechanics, 2018, 39(3): 334-342. doi: 10.21656/1000-0887.380184

Dynamic Cycle Analysis of a Solow Model With Time Delays

doi: 10.21656/1000-0887.380184
Funds:  The National Natural Science Foundation of China(11572231)
  • Received Date: 2017-06-28
  • Rev Recd Date: 2018-01-04
  • Publish Date: 2018-03-15
  • Based on the classical Solow model, a dual delay Solow model was proposed for the first time in view of the capital production investment time delay, the pollution treatment investment time delay and the environment purification parameters, to analyze the dynamic evolution mechanism of the economyenvironment system. Then the dynamic periodic fluctuation behavior of the model was discussed. The results show that the economic cycle will be triggered by any individual investment time delay or both 2 delays; with the increasing of the time delay, the economic cyclic fluctuation will become more intense; the appropriate adjustment of the investment policy will help achieve the expected equilibrium objective, and the stable cyclic operation of the economyenvironment system can be realized.
  • loading
  • [1]
    KARRAS G. Land and population growth in the Solow growth model: some empirical evidence[J].Economics Letters,2010,109(2): 66-68.
    [2]
    GUERRINI L. The Solow-Swan model with a bounded population growth rate[J]. Journal of Mathematical Economics,2006,42(1): 14-21.
    [3]
    STAMOVA I M, STAMOV A G. Impulsive control on the asymptotic stability of the solutions of a Solow model with endogenous labor growth[J]. Journal of the Franklin Institute,2012,349(8): 2707-2716.
    [4]
    熊俊. 经济增长因素分析模型: 对索洛模型的一个扩展[J]. 数量经济技术经济研究, 2005,22(8): 25-34.(XIONG Jun. Analytical model of economic growth factors: an expansion of Solow model[J]. The Journal of Quantitative & Technical Economics,2005,22(8): 25-34.(in Chinese))
    [5]
    BROCK W A, TAYLOR M S. The Green Solow model[J]. Journal of Economic Growth,2010,15(2): 127-153.
    [6]
    魏立桥, 赵晓娜, 景文宏. 基于环境污染的经济增长模型——以广东省为例[J]. 软科学, 2008,22(2): 54-56.(WEI Liqiao, ZHAO Xiaona, JING Wenhong. Economic growth model based on environmental pollution—taking Guangdong province as an example[J]. Soft Science,2008,22(2): 54-56.(in Chinese))
    [7]
    ANTOCI A, RUSSU P, SORDI S, et al. Industrialization and environmental externalities in a Solow-type model[J]. Journal of Economic Dynamics and Control,2014,47(6): 211-224.
    [8]
    CELLINI R. Implications of Solow’s growth model in the presence of a stochastic steady state[J]. Journal of Macroeconomics,1997,19(1): 135-153.
    [9]
    LEI Dongxia, HUANG Yongzhong. Stationary distribution of stochastic Solow model[J]. Mathematica Application,2014,27(4): 775-778.
    [10]
    李佼瑞, 张艳霞. 带有环境净化的双随机参数Solow模型的稳定性[J]. 统计与信息论坛, 2016,31(6): 7-13.(LI Jiaorui, ZHANG Yanxia. The stability of the Solow model with double random parameters based on environmental purification[J]. Statistics and Information Forum,2016,31(6): 7-13.(in Chinese))
    [11]
    毕志伟, 胡适耕, 梅正阳. 一个时滞经济增长模型的动态分析[J]. 华中科技大学学报, 2001,29(9): 109-111.(BI Zhiwei, HU Shigeng, MEI Zhengyang. Dynamical analysis on the model for economic growth with delay[J]. Journal of Huazhong University of Science and Technology,2001,29(9): 109-111.(in Chinese))
    [12]
    YU Y, HAN X, ZHANG C, et al. Mixed-mode oscillations in a nonlinear time delay oscillator with time varying parameters[J]. Communications in Nonlinear Science and Numerical Simulation,2017,47: 23-34.
    [13]
    WU X P. Zero-Hopf bifurcation analysis of a Kaldor-Kalecki model of business cycle with delay[J]. Nonlinear Analysis: Real World Applications,2012,13(2): 736-754.
    [14]
    LIU C, LU N, ZHANG Q. Dynamical analysis in a hybrid bioeconomic system with multiple time delays and strong Allee effect[J]. Mathematics and Computers in Simulation,2017,136: 104-131.
    [15]
    王万永, 陈丽娟. 具有时滞耦合的n个Van der Pol振子弱共振双Hopf分岔[J]. 应用数学和力学, 2013,34(7): 764-770.(WANG Wanyong, CHEN Lijuan. Weak resonant double Hopf bifurcation of n Van del Pol oscillators with delay coupling[J]. Applied Mathematics and Mechanics,2013,34(7):764-770.(in Chinese))
    [16]
    PASCHE M. Technical progress, structural change and the environmental Kuznets curve[J]. Ecological Economics,2002,42(3): 381-389.
    [17]
    陈六君, 毛潭, 刘为, 等. 环境恶化与经济衰退的动力学模型[J]. 北京师范大学学报(自然科学版), 2004,40(5): 617-622.(CHEN Liujun, MAO Tan, LIU wei, et al. A dynamic model on environmental degradation and economic recession[J]. Journal of Beijing Normal University(Natural Science),2004,40(5): 617-622.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1270) PDF downloads(607) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return