TANG Li-ping, YANG Yu-hong. Characterizations of E-Borwein Properly Efficient Solutions[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1399-1404. doi: 10.21656/1000-0887.380238
Citation: TANG Li-ping, YANG Yu-hong. Characterizations of E-Borwein Properly Efficient Solutions[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1399-1404. doi: 10.21656/1000-0887.380238

Characterizations of E-Borwein Properly Efficient Solutions

doi: 10.21656/1000-0887.380238
Funds:  The National Natural Science Foundation of China(11431004; 11626048; 11701057)
  • Received Date: 2017-08-24
  • Rev Recd Date: 2017-10-10
  • Publish Date: 2017-12-15
  • Based on the idea of Borwein properly efficient solutions, a new concept of approximate Borwein properly efficient solutions for vector optimization problems was proposed via free disposal sets. Equivalent relations were established between the approximate Borwein properly efficient solutions and the E-Benson properly efficient solutions.
  • loading
  • [1]
    Kuhn H W, Tucker A W. Nonlinear programming[C]// Proceeding of the Second Berkeley Symposium on Mathematical Statistics and Probability . Berkeley: University of California Press, 1951: 481-492.
    [2]
    Geoffrion A M. Proper efficiency and the theory of vector maximization[J]. Journal of Mathematical Analysis and Applications,1968,22(3): 618-630.
    [3]
    Borwein J. Proper efficient points for maximizations with respect to cones[J]. SIAM Journal on Control and Optimization,1977,15(1): 57-63.
    [4]
    Benson H P. An improved definition of proper efficiency for vector maximization with respect to cones[J]. Journal of Mathematical Analysis and Applications,1979,71(1): 232-241.
    [5]
    Henig M I. Proper efficiency with respect to cones[J]. Journal of Optimization Theory and Applications,1982,36(3): 387-407.
    [6]
    Borwein J M, Zhuang D. Super efficiency in vector optimization[J]. Transactions of the American Mathematical Society,1993,338(1): 105-122.
    [7]
    Chicco M, Mignanego F, Pusillo L, et al. Vector optimization problems via improvement sets[J]. Journal of Optimization Theory and Applications,2011,150(3): 516-529.
    [8]
    Gutiérrez C, Jiménez B, Novo V. Improvement sets and vector optimization[J]. European Journal of Operational Research,2012,223(2): 304-311.
    [9]
    ZHAO Ke-quan, YANG Xin-min. E-Benson proper efficiency in vector optimization[J]. Optimization,2015,64(4): 739-752.
    [10]
    Chicco M, Rossi A. Existence of optimal points via improvement sets[J]. Journal of Optimization Theory and Applications,2015,167(2): 487-501.
    [11]
    Lalitha C S, Chatterjee P. Stability and scalarization in vector optimization using improvement sets[J]. Journal of Optimization Theory and Applications,2015,166(3): 825-843.
    [12]
    ZHAO Ke-quan, YANG Xin-min. E -proper saddle points and E-proper duality in vector optimization with set-valued maps[J]. Taiwanese Journal of Mathematics,2014,18(2): 483-495.
    [13]
    ZHAO Ke-quan, XIA Yuan-mei, YANG Xin-min. Nonlinear scalarization characterizations of E-efficiency in vector optimization[J]. Taiwanese Journal of Mathematics,2015,19(2): 455-466.
    [14]
    ZHAO Ke-quan, CHEN Guang-ya, YANG Xin-min. Approximate proper efficiency in vector optimization[J]. Optimization,2015,64(8): 1777-1793.
    [15]
    XIA Yuan-mei, ZHANG Wan-li, ZHAO Ke-quan. Characterizations of improvement sets via quasi interior and applications in vector optimization[J]. Optimization Letters,2016,10(4): 769-780.
    [16]
    Oppezzi P, Rossi A. Existence and convergence of optimal points with respect to improvement sets[J]. SIAM Journal on Optimization,2016,26(2): 1293-1311.
    [17]
    Gutiérrez C, Huerga L, Novo V, et al. Duality related to approximate proper solutions of vector optimization problems[J]. Journal of Global Optimization,2016,64(1): 117-139.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1026) PDF downloads(580) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return