ZHENG Mingliang. The Noether Theorem for Nonlinear Optimal Control Problems of Mechanical Multibody System Dynamics[J]. Applied Mathematics and Mechanics, 2018, 39(7): 776-784. doi: 10.21656/1000-0887.380295
Citation: ZHENG Mingliang. The Noether Theorem for Nonlinear Optimal Control Problems of Mechanical Multibody System Dynamics[J]. Applied Mathematics and Mechanics, 2018, 39(7): 776-784. doi: 10.21656/1000-0887.380295

The Noether Theorem for Nonlinear Optimal Control Problems of Mechanical Multibody System Dynamics

doi: 10.21656/1000-0887.380295
Funds:  The National Natural Science Foundation of China(11472247)
  • Received Date: 2017-11-23
  • Rev Recd Date: 2018-01-07
  • Publish Date: 2018-07-15
  • A Noether-type conservation law for the nonlinear optimal control problems of mechanical multibody system dynamics was proposed based on the group invariance principle. The controlled mechanical multi-rigid-body systems under ideal holonomic constraints were studied, and the dynamic Euler-Lagrange equations were expressed in the form of the state space with the augmented vector method. The state equations, adjoint equations and governing equations for the optimal solution to the optimal control problem were obtained with the variational method. The Noether symmetric infinitesimal transformation with time, state variables, covariate variables and control variables was applied to the system performance index functional, then the conservation laws of the optimal solution equations were obtained, and the optimal solution relation was expressed in the form of a set of algebraic equations, which lays a solid foundation for the integral method and various numerical algorithms of the optimal solution. Finally, an example about the optimal energy control of the nonlinear dynamics of the mechanical arm under the basic vibration was given to illustrate the correctness of the proposed symmetry method.
  • loading
  • [1]
    吴洪涛, 熊有伦. 机械工程中的多体系统动力学问题[J]. 中国机械工程, 2000,11(8): 608-610.(WU Hongtao, XIONG Youlun. The problem of multi-body systems dynamics in mechanical engineering[J]. China Mechanical Engineering, 2000,11(8): 608-610.(in Chinese))
    [2]
    YUN C, ZONG G H, ZHANG Q X. Study on active control for a flexible beam under the condition of zero gravity[J]. Chinese Journal of Aeronautics,2000,13(1): 51-58.
    [3]
    GANG B S, BRIJ N A. Vibration suppression of flexible spacecraft during attitude control[J]. Aeta Aetrnnautina,2001,49(2): 73-83.
    [4]
    KIM H K, CHOI S B. Compliant control of a two-link flexible manipulator featuring piezoelectric actuators[J]. Mechanism and Machine Theory,2001,36(3): 411-424.
    [5]
    SUN D, MILLS J K. A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement[J]. Mechatronic,2004,14(4): 381-401.
    [6]
    徐小明, 钟万勰. 基于四元数表示的多体动力学系统及其保辛积分算法[J]. 应用数学和力学, 2014,35(10): 1071-1080.(XU Xiaoming, ZHONG Wanxie. Symplectic integration for multibody dynamics based on quaternion parameters[J]. Applied Mathematics and Mechanics, 2014,35(10): 1071-1080.(in Chinese))
    [7]
    董雪仰, 戈新生. 航天器太阳帆板展开过程最优控制的自适应Gauss伪谱法[J]. 应用数学和力学, 2016,37(6): 655-664.(DONG Xueyang, GE Xinsheng. The adaptive Gauss pseudospectral method for the optimal control of spacecraft solar array deployment[J]. Applied Mathematics and Mechanics,2016,37(6): 655-664.(in Chinese))
    [8]
    VASQUES C M A, RODRIGUES J D. Active vibration control of smart piezoelectric beams: comparison of classical and optimal feedback control strategies[J]. Computers and Structures,2006,84(22/23): 1402-1414.
    [9]
    CAI G P, LIM C W. Active control of a flexible hub-beam system using optimal tracking control method[J]. International Journal Mechanical Sciences,2006,48(10): 1150-1162.
    [10]
    KOBILAROV M. Discrete geometric motion control of autonomous vehicles [D]. PhD Thesis. Los Angeles: University of Southern California, 2008: 12-18.
    [11]
    张耀欣, 丛爽. 平面二自由度冗余驱动并联机构的最优运动控制及其仿真[J]. 系统仿真学报, 2005,17(10): 2450-2454.(ZHANG Yaoxin, CONG Shuang. Optimal motion control and simulation of redundantly actuated 2-Dof planar parallel manipulator[J]. Journal of System Simulation,2005,17(10): 2450-2454.(in Chinese))
    [12]
    戈新生, 陈立群, 刘延柱. 一类多体系统的非完整运动规划最优控制[J]. 工程力学, 2006,23(3): 63-68.(GE Xinsheng, CHEN Liqun, LIU Yanzhu. Optimal control of a nonholonomic motion planning for mutilbody systems[J]. Engineering Mechanics,2006,23(3): 63-68.(in Chinese))
    [13]
    LEYENDECKER S, OBER-BLBAUM S, MARSDEN J E, et al. Discrete mechanics and optimal control for constrained systems[J]. Optimal Control Applications and Methods,2010,31(6): 505-528.
    [14]
    白龙, 董志峰, 戈新生. 基于李群的水下航体动力学建模及最优控制[J]. 系统仿真学报, 2016,28(5): 1150-1157.(BAI Long, DONG Zhifeng, GE Xinsheng. Lie group modeling and optimal control of underwater vehicle[J]. Journal of System Simulation,2016,28(5): 1150-1157.(in Chinese))
    [15]
    彭海军, 李飞, 高强. 多体系统轨迹跟踪的瞬时最优控制保辛方法[J]. 力学学报, 2016,48(4): 784-781.(PENG Haijun, LI Fei, GAO Qiang. Symplectic method for instantaneous optimal control of multibody system trajectory tracking[J]. Acta Mechanica Sinica,2016,48(4): 784-781.(in Chinese))
    [16]
    FREDERICO G S F, TORRES D F M. Fractional conservation laws in optimal control theory[J]. Nonlinear Dynamics,2008,53(3): 215-222.
    [17]
    HUSSEIN I I, BLOCH A M. Optimal control of underactuated nonholonomic mechanical systems[J]. IEEE Translations on Automatic Control,2008,53(3): 668-682.
    [18]
    TORRES D F M. On the Noether theorem for optimal control[J]. European Journal of Control,2002,8(1): 56-63.
    [19]
    TORRES D F M. Carathdory equivalence, Noether theorems, and Tonelli full-regularity in the calculus of variations and optimal control[J]. Journal of Mathematical Sciences,2004,120(1): 1032-1050.
    [20]
    FABIEN B. Analytical System Dynamics [M]. Berlin: Springer, 2009: 46-53.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1266) PDF downloads(421) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return