Volume 44 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
XU Xiaoyang, ZHAO Yuting. Numerical Simulation of Transient Non-Isothermal Viscoelastic Couette Flows Based on the SPH Method[J]. Applied Mathematics and Mechanics, 2023, 44(6): 654-665. doi: 10.21656/1000-0887.430318
Citation: XU Xiaoyang, ZHAO Yuting. Numerical Simulation of Transient Non-Isothermal Viscoelastic Couette Flows Based on the SPH Method[J]. Applied Mathematics and Mechanics, 2023, 44(6): 654-665. doi: 10.21656/1000-0887.430318

Numerical Simulation of Transient Non-Isothermal Viscoelastic Couette Flows Based on the SPH Method

doi: 10.21656/1000-0887.430318
  • Received Date: 2022-10-11
  • Rev Recd Date: 2023-01-09
  • Publish Date: 2023-06-01
  • Based on the smoothed particle hydrodynamics (SPH) method, the transient non-isothermal viscoelastic flows were numerically simulated. First, the viscoelastic Couette flow based on the Oldroyd-B model under isothermal condition was simulated. Then, the simulation was extended to the non-isothermal case, in which the Reynolds exponential model was adopted to evaluate the dependence of the viscosity and the relaxation time on the temperature. The accuracy and effectiveness of the SPH method for simulating transient non-isothermal viscoelastic flows were verified through comparison with the finite volume method and evaluation of numerical convergence. The different flow characteristics of the non-isothermal flow compared with those of the isothermal flow were discussed. The effects of the temperature dependence coefficient and the Péclet number on the flow physics were analyzed. The numerical results demonstrate that, the SPH method can accurately and effectively simulate transient non-isothermal viscoelastic flow problems.
  • loading
  • [1]
    程波, 徐峰. 考虑细胞外基质黏弹性行为的细胞黏附力学模型[J]. 应用数学和力学, 2021, 42(10): 1074-1080. doi: 10.21656/1000-0887.420259

    CHENG Bo, XU Feng. A molecular clutch model of cellular adhesion on viscoelastic substrate[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1074-1080. (in Chinese) doi: 10.21656/1000-0887.420259
    [2]
    PETERS G W M, BAAIJENS F P T. Modelling of non-isothermal viscoelastic flows[J]. Journal of Non-Newtonian Fluid Mechanics, 1997, 68(2/3): 205-224.
    [3]
    MEBURGER S, NIETHAMMER M, BOTHE D, et al. Numerical simulation of non-isothermal viscoelastic flows at high Weissenberg numbers using a finite volume method on general unstructured meshes[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 287: 104451. doi: 10.1016/j.jnnfm.2020.104451
    [4]
    MORENO L, CODINA R, BAIGES J. Numerical simulation of non-isothermal viscoelastic fluid flows using a VMS stabilized finite element formulation[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 296: 104640. doi: 10.1016/j.jnnfm.2021.104640
    [5]
    GAO P. Three dimensional finite element computation of the non-isothermal polymer filling process by the phase field model[J]. Advances in Engineering Software, 2022, 172: 103207. doi: 10.1016/j.advengsoft.2022.103207
    [6]
    GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389. doi: 10.1093/mnras/181.3.375
    [7]
    LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013-1024. doi: 10.1086/112164
    [8]
    LIU G R, LIU M B. Smoothed Particle Hydrodynamics: a Meshfree Particle Method[M]. Singapore: World Scientific, 2003.
    [9]
    XU X, JIANG Y L, YU P. SPH simulations of 3D dam-break flow against various forms of the obstacle: toward an optimal design[J]. Ocean Engineering, 2021, 229: 108978. doi: 10.1016/j.oceaneng.2021.108978
    [10]
    PENG Y X, ZHANG A M, MING F R. Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM[J]. Ocean Engineering, 2021, 222: 108576. doi: 10.1016/j.oceaneng.2021.108576
    [11]
    黄志涛, 杨瑜, 邵家儒, 等. 罐车防晃结构SPH模拟研究[J]. 应用数学和力学, 2020, 41(7): 760-770. doi: 10.21656/1000-0887.400234

    HUANG Zhitao, YANG Yu, SHAO Jiaru, et al. Numerical simulation of sloshing mitigating structures in tank trucks with the SPH method[J]. Applied Mathematics and Mechanics, 2020, 41(7): 760-770. (in Chinese) doi: 10.21656/1000-0887.400234
    [12]
    MENG Z F, ZHANG A M, YAN J L, et al. A hydroelastic fluid-structure interaction solver based on the Riemann-SPH method[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114522. doi: 10.1016/j.cma.2021.114522
    [13]
    ELLERO M, TANNER R I. SPH simulations of transient viscoelastic flows at low Reynolds number[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 132(1/3): 61-72.
    [14]
    FANG J, OWENS R G, TACHER L, et al. A numerical study of the SPH method for simulating transient viscoelastic free surface flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 139(1/2): 68-84.
    [15]
    MURASHIMA T, TANIGUCHI T. Multiscale simulation of history-dependent flow in entangled polymer melts[J]. Europhysics Letters, 2011, 96(1): 18002. doi: 10.1209/0295-5075/96/18002
    [16]
    杨波, 欧阳洁. 基于SPH方法的瞬态粘弹性流体的数值模拟[J]. 计算物理, 2010, 27(5): 679. doi: 10.3969/j.issn.1001-246X.2010.05.007

    YANG Bo, OUYANG Jie. Numerical simulation of transient viscoelastic flows using SPH method[J]. Chinese Journal of Computational Physics, 2010, 27(5): 679. (in Chinese) doi: 10.3969/j.issn.1001-246X.2010.05.007
    [17]
    XU X, DENG X L. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids[J]. Computer Physics Communications, 2016, 201: 43-62. doi: 10.1016/j.cpc.2015.12.016
    [18]
    KING J R C, LIND S J. High Weissenberg number simulations with incompressible smoothed particle hydrodynamics and the log-conformation formulation[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 293: 104556. doi: 10.1016/j.jnnfm.2021.104556
    [19]
    DUQUE-DAZA C, ALEXIADIS A. A simplified framework for modelling viscoelastic fluids in discrete multiphysics[J]. Chem Engineering, 2021, 5(3): 61.
    [20]
    VAHABI M, HADAVANDMIRZAEI H, KAMKARI B, et al. Interaction of a pair of in-line bubbles ascending in an Oldroyd-B liquid: a numerical study[J]. European Journal of Mechanics B: Fluids, 2021, 85: 413-429. doi: 10.1016/j.euromechflu.2020.11.004
    [21]
    SPANJAARDS M M A, HULSEN M A, ANDERSON P D. Computational analysis of the extrudate shape of three-dimensional viscoelastic, non-isothermal extrusion flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 282: 104310. doi: 10.1016/j.jnnfm.2020.104310
    [22]
    白羽, 方慧灵, 张艳. Oldroyd-B流体绕拉伸楔形体的非稳态滑移流动与传热分析[J]. 应用数学和力学, 2022, 43(3): 272-280. doi: 10.21656/1000-0887.420197

    BAI Yu, FANG Huiling, ZHANG Yan. Unsteady slip flow and heat transfer analysis of Oldroyd-B fluid over the stretching wedge[J]. Applied Mathematics and Mechanics, 2022, 43(3): 272-280. (in Chinese) doi: 10.21656/1000-0887.420197
    [23]
    LYU H G, SUN P N. Further enhancement of the particle shifting technique: towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows[J]. Applied Mathematical Modelling, 2022, 101: 214-238. doi: 10.1016/j.apm.2021.08.014
    [24]
    XU X, YU P. A multiscale SPH method for simulating transient viscoelastic flows using bead-spring chain model[J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 229: 27-42. doi: 10.1016/j.jnnfm.2016.01.005
    [25]
    BONET J, LOK T S L. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 180(1/2): 97-115.
    [26]
    SHAO S, LO E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface[J]. Advances in Water Resources, 2003, 26(7): 787-800. doi: 10.1016/S0309-1708(03)00030-7
    [27]
    TOMÉ M F, MANGIAVACCHI N, CUMINATO J A, et al. A finite difference technique for simulating unsteady viscoelastic free surface flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 106(2/3): 61-106.
    [28]
    ZHUANG X, OUYANG J, LI W, et al. Three-dimensional simulations of non-isothermal transient flow and flow-induced stresses during the viscoelastic fluid filling process[J]. International Journal of Heat and Mass Transfer, 2017, 104: 374-391. doi: 10.1016/j.ijheatmasstransfer.2016.08.064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (244) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return