Volume 45 Issue 5
May  2024
Turn off MathJax
Article Contents
SHEN Yang, WANG Qikun, LIU Tangjing. Effect of Shear Thinning Rheological Properties on Particle Migration in Microchannels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 637-650. doi: 10.21656/1000-0887.440326
Citation: SHEN Yang, WANG Qikun, LIU Tangjing. Effect of Shear Thinning Rheological Properties on Particle Migration in Microchannels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 637-650. doi: 10.21656/1000-0887.440326

Effect of Shear Thinning Rheological Properties on Particle Migration in Microchannels

doi: 10.21656/1000-0887.440326
  • Received Date: 2023-11-01
  • Rev Recd Date: 2024-01-03
  • Publish Date: 2024-05-01
  • A relative motion model was used to numerically simulate the phenomenon of particle aggregation in shear thinning fluids. To understand the shear thinning effects on particle mechanical properties in microfluidics, the shear thinning matching was performed with viscoelastic and non-viscoelastic fluids. The research results indicate that, shear thinning characteristics can significantly alter the mechanical properties of particles. In non-viscoelastic fluids, shear thinning can cause the aggregation position of particles to move towards the wall, and has an incentive effect on the aggregation speed of particles. In viscoelastic fluids, the occurrence of shear thinning will bring a decrease of the fluid elasticity, resulting in particle convergence from the center to the wall.
  • loading
  • [1]
    STOLPE A, PANTEL K, SLEIJFER S, et al. Circulating tumor cell isolation and diagnostics: toward routine clinical use[J]. Cancer Research, 2011, 71(18): 5955-5960. doi: 10.1158/0008-5472.CAN-11-1254
    [2]
    GASCOYNE P, SATAYAVIVAD J, RUCHIRAWAT M. Microfluidic approaches to malaria detection[J]. Acta Tropica, 2004, 89(3): 357-369. doi: 10.1016/j.actatropica.2003.11.009
    [3]
    GOSSETT D R, WEAVER W M, MACH A J, et al. Label-free cell separation and sorting in microfluidic systems[J]. Analytical and Bioanalytical Chemistry, 2010, 397(8): 3249-3267. doi: 10.1007/s00216-010-3721-9
    [4]
    SETHU P, SIN A, TONER M. Microfluidic diffusive filter for apheresis (leukapheresis)[J]. Lab Chip, 2006, 6(1): 83-89. doi: 10.1039/B512049G
    [5]
    ZHOU J, PAPAUTSKY I. Viscoelastic microfluidics: progress and challenges[J]. Microsystems & Nanoengineering, 2020, 6(1): 113.
    [6]
    SALAFI T, ZEMING K K, ZHANG Y. Advancements in microfluidics for nanoparticle separation[J]. Lab on a Chip, 2017, 17(1): 11-33. doi: 10.1039/C6LC01045H
    [7]
    蔡伟华, 李小斌, 张红娜, 等. 黏弹性流体动力学[M]. 北京: 科学出版社, 2016.

    CAI Weihua, LI Xiaobin, ZHANG Hongna, et al. Viscoelastic Fluid Dynamics[M]. Beijing: Science Press, 2016. (in Chinese)
    [8]
    LI D, XUAN X. The motion of rigid particles in the Poiseuille flow of pseudoplastic fluids through straight rectangular microchannels[J]. Microfluidics and Nanofluidics, 2019, 23(54): 1-11.
    [9]
    马小晶, 周鑫, 吐松江·卡日, 等. 乙醇液滴撞击高温壁面蒸发过程的模拟预测研究[J]. 应用数学和力学, 2023, 44(5): 535-542. doi: 10.21656/1000-0887.430139

    MA Xiaojing, ZHOU Xin, TUSONGJIANG Kari, et al. Simulation and prediction of the evaporation process of ethanol droplets impacting high temperature wall[J]. Applied Mathematics and Mechanics, 2023, 44(5): 535-542. (in Chinese) doi: 10.21656/1000-0887.430139
    [10]
    朱帅润, 李绍红, 钟彩尹, 等. 时间分数阶的非饱和渗流数值分析及其应用[J]. 应用数学和力学, 2022, 43(9): 966-975. doi: 10.21656/1000-0887.420334

    ZHU Shuairun, LI Shaohong, ZHONG Caiyin, et al. Numerical analysis of time fractional-order unsaturated flow and its application[J]. Applied Mathematics and Mechanics, 2022, 43(9): 966-975. (in Chinese) doi: 10.21656/1000-0887.420334
    [11]
    HU X, LIN J, GUO Y, et al. Motion and equilibrium position of elliptical and rectangular particles in a channel flow of a power-law fluid[J]. Powder Technology, 2021, 377: 585-596. doi: 10.1016/j.powtec.2020.09.028
    [12]
    HU X, LIN J, LIN P, et al. Rigid spheroid migration in square channel flow of power-law fluids[J]. International Journal of Mechanical Sciences, 2023, 247: 108194. doi: 10.1016/j.ijmecsci.2023.108194
    [13]
    王企鲲. 微通道中颗粒所受惯性升力特性的数值研究[J]. 机械工程学报, 2014, 50(2): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201514023.htm

    WANG Qikun. Numerical investigation on mechanism for inertial lift on particles in micro-channel[J]. Journal of Mechanical Engineering, 2014, 50(2): 165-170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201514023.htm
    [14]
    刘唐京, 王企鲲, 邹赫. 高Re数层流管道中颗粒聚集特性的数值研究[J]. 应用数学和力学, 2023, 44(1): 70-79. doi: 10.21656/1000-0887.430075

    LIU Tangjing, WANG Qikun, ZOU He. Numerical investigation of particle focusing patterns in laminar pipe flow with high Reynolds numbers[J]. Applied Mathematics and Mechanics, 2023, 44(1): 70-79. (in Chinese) doi: 10.21656/1000-0887.430075
    [15]
    JALALI A, DELOUEI A A, KHORASHADIZADEH M, et al. Mesoscopic simulation of forced convective heat transfer of Carreau-Yasuda fluid flow over an inclined square: temperature-dependent viscosity[J]. Journal of Applied and Computational Mechanics, 2020, 6(2): 307-319.
    [16]
    XIE C Y, ZHANG J, BERTOLA V, et al. Lattice Boltzmann modeling for multiphase viscoplastic fluid flow[J]. Journal of Non-Newton Fluid Mechanics, 2016, 234: 118-128.
    [17]
    SURESHKUMAR R, BERIS A N. Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows[J]. Journal of Non-Newton Fluid Mechanics, 1995, 60(1): 53-80.
    [18]
    STEWART P A, LAY N, SUSSMAN M, et al. An improved sharp interface method for viscoelastic and viscous two-phase flows[J]. Journal of Scientific Computing, 2008, 35(1): 43-61.
    [19]
    郑智颖. FLUENT在粘弹性流体流动数值模拟中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    ZHENG Zhiying. Application of FLUENT software in numerical simulation for viscoelastic fluid flow[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
    [20]
    TAMANO S, ITOH M, HOTTA S, et al. Effect of rheological properties on drag reduction in turbulent boundary layer flow[J]. Physics of Fluids, 2009, 21(5): 055101.
    [21]
    RAFFIEE A H, ARDEKANI A M, DABIRI S. Numerical investigation of elasto-inertial particle focusing patterns in viscoelastic microfluidic devices[J]. Journal of Non-Newton Fluid Mechanics, 2019, 272: 104166.
    [22]
    王企鲲, 孙仁. 方形截面微通道中颗粒"惯性聚集"特性的数值研究[C]//第七届全国流体力学学术会议. 2012.

    WANG Qikun, SUN Ren. Numerical study on the inertial aggregation characteristics of particles in square cross section microchannels[C]//The 7th National Conference on Fluid Mechanics. 2012. (in Chinese)
    [23]
    HU X, LIN J, CHEN D, et al. Influence of non-Newtonian power law rheology on inertial migration of particles in channel flow[J]. Biomicrofluidics, 2020, 14(1): 0140105.
    [24]
    LI G, MCKINLEY G H, ARDEKANI A M. Dynamics of particle migration in channel flow of viscoelastic fluids[J]. Journal of Fluid Mechanics, 2015, 785: 486-505.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views (232) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return