Volume 45 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
HUANG Zongzheng, MI Dong, OUYANG Zhigao, HE Xiang, HUANG Xing, ZHOU Wei, JIANG Lanlan, GUO Zaoyang, MA Liangying. Application of the Rate-Dependent Ladeveze Model in Failure Analysis of Composites[J]. Applied Mathematics and Mechanics, 2024, 45(7): 864-874. doi: 10.21656/1000-0887.440358
Citation: HUANG Zongzheng, MI Dong, OUYANG Zhigao, HE Xiang, HUANG Xing, ZHOU Wei, JIANG Lanlan, GUO Zaoyang, MA Liangying. Application of the Rate-Dependent Ladeveze Model in Failure Analysis of Composites[J]. Applied Mathematics and Mechanics, 2024, 45(7): 864-874. doi: 10.21656/1000-0887.440358

Application of the Rate-Dependent Ladeveze Model in Failure Analysis of Composites

doi: 10.21656/1000-0887.440358
  • Received Date: 2023-12-18
  • Rev Recd Date: 2024-03-13
  • Publish Date: 2024-07-01
  • To investigate the load-bearing capacity and failure modes of unidirectional fiber-reinforced laminates subjected to uniaxial loads, finite element analyses were conducted to predict mechanical responses such as plastic accumulation and damage evolution. The Ladeveze constitutive model based on the 2D continuum damage theory was introduced and a user material subroutine was developed based on this model to consider the plastic behavior of the composites, where the isotropic plastic strengthening was assumed. Subsequently, a LS-DYNA finite element simulation model for unidirectional laminate plates was established to explore typical failure behaviors under loading conditions of longitudinal tension, longitudinal compression, transverse tension, and in-plane shear, respectively. A comparative analysis with experimental results was carried out to validate the efficacy of the developed subroutine. Finally, a logarithmic rate-dependent correction function was introduced to predict the damage modes of composite materials under various strain rate loads. The sensitivity of the rate effect in unidirectional fiber-reinforced laminates and its correlation with load-bearing components were investigated.
  • (Recommended by LIANG Xudong, M.AMM Youth Editorial Board)
  • loading
  • [1]
    陈静芬. 基于弹塑性损伤本构模型的复合材料层合板破坏荷载预测[J]. 复合材料学报, 2017, 34 (4): 773-785. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201704011.htm

    CHEN Jingfen. Failure loads prediction of composite laminates using a combined elastic damage model[J]. Acta Materiae Compositae Sinica, 2017, 34 (4): 773-785. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201704011.htm
    [2]
    TORO S, SÁNCHEZ P J, BLANCO P J, et al. Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales[J]. International Journal of Plasticity, 2016, 76 : 75-110. doi: 10.1016/j.ijplas.2015.07.001
    [3]
    CATALANOTTI G, CAMANHO P P, MARQUES A T. Three-dimensional failure criteria for fiber-reinforced laminates[J]. Composite Structures, 2013, 95 : 63-79. doi: 10.1016/j.compstruct.2012.07.016
    [4]
    TSAI S W, MELO J D D. A unit circle failure criterion for carbon fiber reinforced polymer composites[J]. Composites Science and Technology, 2016, 123 : 71-78. doi: 10.1016/j.compscitech.2015.12.011
    [5]
    VOGLER M, ROLFES R, CAMANHO P P. Modeling the inelastic deformation and fracture of polymer composites, part Ⅰ: plasticity model[J]. Mechanics of Materials, 2013, 59 : 50-64. doi: 10.1016/j.mechmat.2012.12.002
    [6]
    LI N, GU J, CHEN P. Fracture plane based failure criteria for fibre-reinforced composites under three-dimensional stress state[J]. Composite Structures, 2018, 204 : 466-474. doi: 10.1016/j.compstruct.2018.07.103
    [7]
    CHEVALIER J, MORELLE X P, BAILLY C, et al. Micro-mechanics based pressure dependent failure model for highly cross-linked epoxy resins[J]. Engineering Fracture Mechanics, 2016, 158 : 1-12. doi: 10.1016/j.engfracmech.2016.02.039
    [8]
    SUN Q, MENG Z, ZHOU G, et al. Multi-scale computational analysis of unidirectional carbon fiber reinforced polymer composites under various loading conditions[J]. Composite Structures, 2018, 196 : 30-43. doi: 10.1016/j.compstruct.2018.05.025
    [9]
    刘鑫, 吴倩倩, 于国财, 等. 碳纤维/树脂基复合材料曲壁蜂窝夹芯结构的三点弯曲性能[J]. 应用数学和力学, 2022, 43 (5): 490-498. doi: 10.21656/1000-0887.430061

    LIU Xin, WU Qianqian, YU Guocai, et al. Three-point bending properties of carbon fiber reinforced polymer composite honeycomb sandwich structures with curved wall[J]. Applied Mathematics and Mechanics, 2022, 43 (5): 490-498. (in Chinese) doi: 10.21656/1000-0887.430061
    [10]
    李汝鹏, 陈磊, 刘学术, 等. 基于渐进损伤理论的复合材料开孔拉伸失效分析[J]. 航空材料学报, 2018, 38 (5): 138-146. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201805018.htm

    LI Rupeng, CHEN Lei, LIU Xueshu, et al. Progressive damage based failure analysis of open-hole composite laminates under tension[J]. Journal of Aeronautical materials, 2018, 38 (5): 138-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201805018.htm
    [11]
    李星, 关志东, 刘璐, 等. 基于应变不变量失效理论的复合材料损伤模拟[J]. 北京航空航天大学学报, 2013, 39 (2): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201302011.htm

    LI Xing, GUAN Zhidong, LIU Lu, et al. Damage simulation of composite materials based on strain invariant failure theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39 (2): 190-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201302011.htm
    [12]
    张超, 许希武, 郭树祥. 含界面脱粘三维五向编织复合材料单向拉伸损伤失效机理研究[J]. 航空材料学报, 2011, 31 (6): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201106014.htm

    ZHANG Chao, XU Xiwu, GUO Shuxiang. Damage and failure mechanism analysis of 3D five-directional braided composites with interface debonding under unidirectional tension[J]. Journal of Aeronautical Materials, 2011, 31 (6): 73-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201106014.htm
    [13]
    刘涛, 刘丰华, 蔡长春, 等. 单向纤维增强铝基复合材料轴向剪切损伤与失效行为的细观力学分析[J]. 塑性工程学报, 2022, 29 (7): 171-180. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC202207023.htm

    LIU Tao, LIU Fenghua, CAI Changchun, et al. Micromechanics analysis of axial shear damage and failure behavior of unidirectional fiber-reinforced aluminum matrix composites[J]. Journal of Plasticity Engineering, 2022, 29 (7): 171-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC202207023.htm
    [14]
    张永正, 刘磊, 刘琦, 等. C/SiC编织型复合材料热/力学性能的多尺度预测[J]. 应用数学和力学, 2023, 44 (10): 1157-1171. doi: 10.21656/1000-0887.440056

    ZHANG Yongzheng, LIU Lei, LIU Qi, et al. Multi-scale prediction of thermal and mechanical properties of C/SiC braided composites[J]. Applied Mathematics and Mechanics, 2023, 44 (10): 1157-1171. (in Chinese) doi: 10.21656/1000-0887.440056
    [15]
    刘志明, 陈静芬, 毛欢, 等. 基于率相关三维弹塑性损伤模型的复合材料渐进失效分析[J]. 复合材料学报, 2022, 39 (5): 2482-2494. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202205055.htm

    LIU Zhiming, CHEN Jingfen, MAO Huan, et al. Progressive failure analysis of composite materials based on rate-dependent three-dimensional elasto-plastic damage model[J]. Acta Materiae Compositae Sinica, 2022, 39 (5): 2482-2494. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202205055.htm
    [16]
    杨凤祥, 陈静芬, 陈善富, 等. 基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测[J]. 复合材料学报, 2020, 37 (9): 2207-2222. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202009013.htm

    YANG Fengxiang, CHEN Jingfen, CHEN Shanfu, et al. Failure strength prediction of composite laminates using 3D damage constitutive model with nonlinear shear effects[J]. Acta Materiae Compositae Sinica, 2020, 37 (9): 2207-2222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202009013.htm
    [17]
    柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真[J]. 应用数学和力学, 2021, 42 (1): 1-14. doi: 10.21656/1000-0887.410262

    LIU Zhanli, CHU Dongyang, WANG Tao, et al. Dynamic failure simulation of metal materials and structures under blast and impact loading[J]. Applied Mathematics and Mechanics, 2021, 42 (1): 1-14. (in Chinese) doi: 10.21656/1000-0887.410262
    [18]
    LADEVEZE P, LEDANTEC E. Damage modelling of the elementary ply for laminated composites[J]. Composites Science and Technology, 1992, 43 (3): 257-267.
    [19]
    龚煦. 复合材料机翼前缘抗鸟撞分析[D]. 西安: 西北工业大学, 2016.

    GONG Xu. Numerical analysis of bird strike on an aircraft wing leading edge made from CERP composite[D]. Xi'an: Northwestern Polytechnical University, 2016. (in Chinese)
    [20]
    张安康, 陈士海. LS-DYNA用户自定义材料模型开发与验证[J]. 计算机应用与软件, 2011, 28 (4): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201104020.htm

    ZHANG Ankang, CHEN Shihai. Exploiting and verifying user-defined material in LS-DYNA[J]. Computer Applications and Software, 2011, 28 (4): 71-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201104020.htm
    [21]
    O'HIGGINS R M, MCCARTHY C T, MCCARTHY M A. Identification of damage and plasticity parameters for continuum damage mechanics modelling of carbon and glass fibre-reinforced composite materials[J]. Strain, 2011, 47 (1): 105-115.
    [22]
    Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate: ASTM D3518/D3518M[M]//Annual Book of ASTM Standards, Vol 15.03. 2001.
    [23]
    WANG C, SUO T, HANG C, et al. Influence of in-plane tensile preloads on impact responses of composite laminated plates[J]. International Journal of Mechanical Sciences, 2019, 161/162 : 105012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (155) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return