Citation: | LI Min, LI Zhuoxuan, SHI Xinli, CAO Jinde. Research on Driving Factors of the RIOHTrack Rutting Prediction Model Based on Interpretable Ensemble Learning[J]. Applied Mathematics and Mechanics, 2025, 46(1): 92-104. doi: 10.21656/1000-0887.450066 |
[1] |
ZHANG N, ALIPOUR A. A two-level mixed-integer programming model for bridge replacement prioritization[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(2): 116-133. doi: 10.1111/mice.12482
|
[2] |
LI Z, ZHANG J, LIU T, et al. Using PSO-SVR algorithm to predict asphalt pavement performance[J]. Journal of Performance of Constructed Facilities, 2021, 35(6): 04021094. doi: 10.1061/(ASCE)CF.1943-5509.0001666
|
[3] |
CHOI S, DO M. Development of the road pavement deterioration model based on the deep learning method[J]. Electronics, 2019, 9(1): 3. doi: 10.3390/electronics9010003
|
[4] |
DAMIRCHILO F, HOSSEINI A, PARAST M M, et al. Machine learning approach to predict international roughness index using long-term pavement performance data[J]. Journal of Transportation Engineering (Part B): Pavements, 2021, 147(4): 04021058. doi: 10.1061/JPEODX.0000312
|
[5] |
HOSSEINI S A, SMADI O. How prediction accuracy can affect the decision-making process in pavement management system[J]. Infrastructures, 2021, 6(2): 28. doi: 10.3390/infrastructures6020028
|
[6] |
NASERI H, SHOKOOHI M, JAHANBAKHSH H, et al. Evolutionary and swarm intelligence algorithms on pavement maintenance and rehabilitation planning[J]. International Journal of Pavement Engineering, 2022, 23(13): 4649-4663. doi: 10.1080/10298436.2021.1969019
|
[7] |
HOSSAIN E I N, SINGH D, ZAMAN P E M. Dynamic modulus-based field rut prediction model from an instrumented pavement section[J]. Procedia-Social and Behavioral Sciences, 2013, 104: 129-138. doi: 10.1016/j.sbspro.2013.11.105
|
[8] |
LI Y, LIU L, XIAO F, et al. Effective temperature for predicting permanent deformation of asphalt pavement[J]. Construction and Building Materials, 2017, 156: 871-879. doi: 10.1016/j.conbuildmat.2017.08.118
|
[9] |
张承烨, 李卓轩, 曹进德. 基于随机k-近邻集成算法的网络流量入侵检测[J]. 南通大学学报(自然科学版), 2023, 22(3): 26-32.
ZHANG Chengye, LI Zhuoxuan, CAO Jinde. Network intrusion detection based on random k-nearest neighbor ensemble algorithm[J]. Journal of Nantong University (Natural Science Edition), 2023, 22(3): 26-32. (in Chinese)
|
[10] |
MIRABDOLAZIMI S M, SHAFABAKHSH G. Rutting depth prediction of hot mix asphalts modified withforta fiber using artificial neural networks and genetic programming technique[J]. Construction and Building Materials, 2017, 148: 666-674. doi: 10.1016/j.conbuildmat.2017.05.088
|
[11] |
ZIARI H, AMINI A, GOLI A, et al. Predicting rutting performance of carbon nano tube (CNT) asphalt binders using regression models and neural networks[J]. Construction and Building Materials, 2018, 160: 415-426. doi: 10.1016/j.conbuildmat.2017.11.071
|
[12] |
SHAN A, HAFEEZ I, HUSSAN S, et al. Predicting the laboratory rutting response of asphalt mixtures using different neural network algorithms[J]. International Journal of Pavement Engineering, 2022, 23(6): 1948-1956. doi: 10.1080/10298436.2020.1830282
|
[13] |
QADIR A, GAZDER U, CHOUDHARY K U N. Artificial neural network models for performance design of asphalt pavements reinforced with geosynthetics[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(8): 319-326. doi: 10.1177/0361198120924387
|
[14] |
WANG S C. Interdisciplinary Computing in Java Programming[M]. Boston, MA: Springer, 2003.
|
[15] |
MISHRA M, SRIVASTAVA M. A view of artificial neural network[C]// 2014 International Conference on Advances in Engineering & Technology Research (ICAETR-2014). Unnao, India: IEEE, 2014: 1-3.
|
[16] |
MAIND S B, WANKAR P. Research paper on basic of artificial neural network[J]. International Journal on Recent and Innovation Trends in Computing and Communication, 2014, 2(1): 96-100.
|
[17] |
SHANMUGANATHAN S A S. Artificial Neural Network Modelling[M]. Cham: Springer, 2016.
|
[18] |
SIMPSON A L, DALEIDEN J F, HADLEY W O. Rutting analysis from a different perspective[J]. Transportation Research Record, 1995, 1473: 9-16.
|
[19] |
SHAFABAKHSH G H, ANI O J, TALEBSAFA M. Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates[J]. Construction and Building Materials, 2015, 85: 136-143. doi: 10.1016/j.conbuildmat.2015.03.060
|
[20] |
ABDELAZIZ N, ABD EL-HAKIM R T, EL-BADAWY S M, et al. International roughness index prediction model for flexible pavements[J]. International Journal of Pavement Engineering, 2020, 21(1): 88-99. doi: 10.1080/10298436.2018.1441414
|
[21] |
BARUA L, ZOU B, NORUZOLIAEE M, et al. A gradient boosting approach to understanding airport runway and taxiway pavement deterioration[J]. International Journal of Pavement Engineering, 2021, 22(13): 1673-1687. doi: 10.1080/10298436.2020.1714616
|
[22] |
王旭东. 从试验环道看长寿命路面的"中国制造"[J]. 中国公路, 2020(14): 30-32. doi: 10.3969/j.issn.1006-3897.2020.14.007
WANG Xudong. Viewing the "Made in China" of long life road surface from the experimental ring road[J]. China Highway, 2020(14): 30-32. (in Chinese) doi: 10.3969/j.issn.1006-3897.2020.14.007
|
[23] |
张蕾, 周兴业, 王旭东. 基于RIOHTrack足尺加速加载试验的长寿命沥青路面行为研究进展[J]. 科学通报, 2020, 65(30): 3247-3258.
ZHANG Lei, ZHOU Xingye, WANG Xudong. Research progress of long-life asphalt pavement behavior based on the RIOHTrack full-scale accelerated loading test[J]. Chinese Science Bulletin, 2020, 65(30): 3247-3258. (in Chinese)
|
[24] |
LI Z, SHI X, CAO J, et al. CPSO-XGBoost segmented regression model for asphalt pavement deflection basin area prediction[J]. Science China Technological Sciences, 2022, 65(7): 1470-1481. doi: 10.1007/s11431-021-1972-7
|
[25] |
ZEIADA W, HAMAD K, OMAR M, et al. Investigation and modelling of asphalt pavement performance in cold regions[J]. International Journal of Pavement Engineering, 2019, 20(8): 986-997. doi: 10.1080/10298436.2017.1373391
|
[26] |
BOMMERT A, SUN X, BISCHL B, et al. Benchmark for filter methods for feature selection in high-dimensional classification data[J]. Computational Statistics & Data Analysis, 2020, 143: 106839.
|
[27] |
NASERI H, WAYGOOD E O D, WANG B B, et al. How to predict climate change stage of change accurately: proposing a new feature selection technique[C]//Transportation Research Board 101st Annual Meeting. Washington DC, 2022.
|
[28] |
LIU L, ZHOU J, AN X, et al. Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China[J]. Expert Systems With Applications, 2010, 37(3): 2517-2521. doi: 10.1016/j.eswa.2009.08.004
|
[29] |
ZOU Z H, YUN Y, SUN J N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment[J]. Journal of Environmental Sciences, 2006, 18(5): 1020-1023. doi: 10.1016/S1001-0742(06)60032-6
|
[30] |
KIREMIRE A R. The application of the Pareto principle in software engineering[Z/OL]. 2021[2024-11-28].
|
[31] |
REFAEILZADEH P, TANG L, LIU H. Cross-validation[C]//Encyclopedia of Database Systems. Boston, MA: Springer, 2009: 532-538.
|
[32] |
NGARAMBE J, IRAKOZE A, YUN G Y, et al. Comparative performance of machine learning algorithms in the prediction of indoor daylight illuminances[J]. Sustainability, 2020, 12(11): 4471. doi: 10.3390/su12114471
|
[33] |
LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]// 31st Conference on Neural Information Processing Systems. Long Beach, CA, 2017.
|
[34] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. doi: 10.1023/A:1010933404324
|
[35] |
CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794.
|
[36] |
PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features[C]//Advances in Neural Information Processing Systems 31. 2018: 6138-6148.
|
[37] |
KE G L, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Advances in Neural Information Processing Systems 30. 2017: 3147-3155.
|
[38] |
ZHOU Z H, FENG J. Deep forest[J]. National Science Review, 2019, 6(1): 74-86. doi: 10.1093/nsr/nwy108
|
[39] |
PETERSON L. K-nearest neighbor[J]. Scholarpedia, 2009, 4(2): 1883. doi: 10.4249/scholarpedia.1883
|
[40] |
HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4): 18-28. doi: 10.1109/5254.708428
|
[41] |
MYLES A J, FEUDALE R N, LIU Y, et al. An introduction to decision tree modeling[J]. Journal of Chemometrics, 2004, 18(6): 275-285. doi: 10.1002/cem.873
|
[42] |
GARDNER M W, DORLING S R. Artificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciences[J]. Atmospheric Environment, 1998, 32(14/15): 2627-2636.
|
[43] |
李卓轩, 林凯迪, 郭建华, 等. 基于车联网数据的运输车辆安全评价模型[J]. 南通大学学报(自然科学版), 2020, 19(1): 26-32.
LI Zhuoxuan, LIN Kaidi, GUO Jianhua, et al. Transportation vehicle safety evaluation model based on vehicle network data[J]. Journal of Nantong University (Natural Science Edition), 2020, 19(1): 26-32. (in Chinese)
|