Volume 46 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
SONG Shangxiao, JIANG Longxiang, WANG Liyuan, CHU Xinkun, ZHANG Hao. ROE-Scheme Physics-Augmented Graph Neural Networks in Solving Eulerian and Laminar Flow Incompressible NS Equations[J]. Applied Mathematics and Mechanics, 2025, 46(1): 55-71. doi: 10.21656/1000-0887.450098
Citation: SONG Shangxiao, JIANG Longxiang, WANG Liyuan, CHU Xinkun, ZHANG Hao. ROE-Scheme Physics-Augmented Graph Neural Networks in Solving Eulerian and Laminar Flow Incompressible NS Equations[J]. Applied Mathematics and Mechanics, 2025, 46(1): 55-71. doi: 10.21656/1000-0887.450098

ROE-Scheme Physics-Augmented Graph Neural Networks in Solving Eulerian and Laminar Flow Incompressible NS Equations

doi: 10.21656/1000-0887.450098
  • Received Date: 2024-04-15
  • Rev Recd Date: 2024-07-08
  • Publish Date: 2025-01-01
  • In recent years, the deep learning method incorporating physical information provided a new idea for solving partial differential equations. However, most of the studies so far has low computational accuracy and poor time extrapolation for problems with discontinuities in the solution space. To address the above 2 problems, the ROE-PIGNN model was proposed for fusing equations or data information with the graph neural networks and the ROE scheme in computational fluid dynamics. Numerical experiments show that, the model achieves a computational accuracy comparable to that of the ROE scheme in solving the shock tube problem controlled by the Eulerian equation, and has the ability of extrapolation over a certain time range. Finally, the 2D cylindrical bypass flow traditional problem controlled by the Navier-Stokes (NS) equations was solved. The experimental results show that, the model can predict the subsequent periodic flow and reproduce the flow structure more accurately at some key positions, with an error reduction of 60% compared to the purely data-driven approach.
  • loading
  • [1]
    RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378 : 686-707. doi: 10.1016/j.jcp.2018.10.045
    [2]
    KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3 : 422-440. doi: 10.1038/s42254-021-00314-5
    [3]
    王江, 陈文. 基于组合神经网络的时间分数阶扩散方程计算方法[J]. 应用数学和力学, 2019, 40 (7): 741-750. doi: 10.21656/1000-0887.390288

    WANG Jiang, CHEN Wen. A combined artificial neural network method for solving time fractional diffusion equations[J]. Applied Mathematics and Mechanics, 2019, 40 (7): 741-750. (in Chinese) doi: 10.21656/1000-0887.390288
    [4]
    林云云, 郑素佩, 封建湖, 等. 间断问题扩散正则化的PINN反问题求解算法[J]. 应用数学和力学, 2023, 44 (1): 112-122. doi: 10.21656/1000-0887.430010

    LIN Yunyun, ZHENG Supei, FENG Jianhu, et al. Diffusive regularization inverse PINN solutions to discontinuous problems[J]. Applied Mathematics and Mechanics, 2023, 44 (1): 112-122. (in Chinese) doi: 10.21656/1000-0887.430010
    [5]
    DAFERMOS C M. Hyperbolic Conservation Laws in Continuum Physics[M]. Berlin: Springer, 2016.
    [6]
    MAO Z, JAGTAP A D, KARNIADAKIS G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360 : 112789. doi: 10.1016/j.cma.2019.112789
    [7]
    LEVEQUE R J. Finite-Volume Methods for Hyperbolic Problems[M]. Cambridge: Cambridge University Press, 2002.
    [8]
    GODLEWSKI E, RAVIART P A. Numerical Approximation of Hyperbolic Systems of Conservation Laws[M]. New York: Springer, 1996.
    [9]
    COCKBURN B, KARNIADAKIS G E, SHU C W. Discontinuous Galerkin Methods[M]. Berlin: Springer, 2000.
    [10]
    MAGIERA J, RAY D, HESTHAVEN J S, et al. Constraint-aware neural networks for Riemann problems[J]. Journal of Computational Physics, 2020, 409 : 109345. doi: 10.1016/j.jcp.2020.109345
    [11]
    SCHWANDER L, RAY D, HESTHAVEN J S. Controlling oscillations in spectral methods by local artificial viscosity governed by neural networks[J]. Journal of Computational Physics, 2021, 431 : 110144. doi: 10.1016/j.jcp.2021.110144
    [12]
    BEZGIN D A, SCHMIDT S J, ADAMS N A. A data-driven physics-informed finite-volume scheme for nonclassical undercompressive shocks[J]. Journal of Computational Physics, 2021, 437 : 110324. doi: 10.1016/j.jcp.2021.110324
    [13]
    BEZGIN D A, SCHMIDT S J, ADAMS N A. WENO3-NN: a maximum-order three-point data-driven weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2022, 452 : 110920. doi: 10.1016/j.jcp.2021.110920
    [14]
    LIU L, LIU S, XIE H, et al. Discontinuity computing using physics-informed neural networks[J]. Journal of Scientific Computing, 2024, 98 : 22. doi: 10.1007/s10915-023-02412-1
    [15]
    CAO W, SONG J, ZHANG W. A solver for subsonic flow around airfoils based on physics-informed neural networks and mesh transformation[J]. Physics of Fluids, 2024, 36 (2): 027134. doi: 10.1063/5.0188665
    [16]
    HUANG H, LIU Y, YANG V. Neural networks with inputs based on domain of dependence and A converging sequence for solving conservation laws, part Ⅰ: 1D Riemann problems[J/OL]. 2021[2024-07-08]. https://arxiv.org/abs/2109.09316.
    [17]
    ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43 (2): 357-372. doi: 10.1016/0021-9991(81)90128-5
    [18]
    GODUNOV S K. A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations[J]. Mathematics of the USSR-Sbornik, 1959, 47 : 271-306.
    [19]
    VAN LEER B. Towards the Ultimate Conservative Difference Scheme I. The Quest of Monotonicity[M]. Berlin: Heidelberg, 1973.
    [20]
    VAN LEER B. Towards the ultimate conservative difference scheme[J]. Journal of Computational Physics, 1997, 135 (2): 229-248. doi: 10.1006/jcph.1997.5704
    [21]
    HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ[J]. Journal of Computational Physics, 1997, 131 (1): 3-47. doi: 10.1006/jcph.1996.5632
    [22]
    LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115 (1): 200-212. doi: 10.1006/jcph.1994.1187
    [23]
    LIU Y, SHU C W, TADMOR E, et al. Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction[J]. SIAM Journal on Numerical Analysis, 2007, 45 (6): 2442-2467. doi: 10.1137/060666974
    [24]
    LIU Y, SHU C W, TADMOR E, et al. Non-oscillatory hierarchical reconstruction for central and finite volume schemes[J]. Communications in Computational Physics, 2007, 2 (5): 933-963.
    [25]
    XU Z, LIU Y, SHU C W. Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells[J]. Journal of Computational Physics, 2009, 228 (6): 2194-2212. doi: 10.1016/j.jcp.2008.11.025
    [26]
    YANG V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems[J]. Proceedings of the Combustion Institute, 2000, 28 (1): 925-942. doi: 10.1016/S0082-0784(00)80299-4
    [27]
    WANG X, YANG V. Supercritical mixing and combustion of liquid-oxygen/kerosene bi-swirl injectors[J]. Journal of Propulsion and Power, 2016, 33 (2): 316-322.
    [28]
    UNNIKRISHNAN U, HUO H, WANG X, et al. Subgrid scale modeling considerations for large eddy simulation of supercritical turbulent mixing and combustion[J]. Physics of Fluids, 2021, 33 (7): 075112. doi: 10.1063/5.0055751
    [29]
    TEYSSIER R, COMMERÇON B. Numerical methods for simulating star formation[J]. Frontiers in Astronomy and Space Sciences, 2019, 6 : 51. doi: 10.3389/fspas.2019.00051
    [30]
    BAR-SINAI Y, HOYER S, HICKEY J, et al. Learning data-driven discretizations for partial differential equations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (31): 15344-15349.
    [31]
    高普阳, 赵子桐, 杨扬. 基于卷积神经网络模型数值求解双曲型偏微分方程的研究[J]. 应用数学和力学, 2021, 42 (9): 932-947. doi: 10.21656/1000-0887.420050

    GAO Puyang, ZHAO Zitong, YANG Yang. Study on numerical solutions to hyperbolic partial differential equations based on the convolutional neural network model[J]. Applied Mathematics and Mechanics, 2021, 42 (9): 932-947. (in Chinese) doi: 10.21656/1000-0887.420050
    [32]
    JIANG L, WANG L, CHU X, et al. PhyGNNet: solving spatiotemporal PDEs with physics-informed graph neural network[C]//Proceedings of the 2023 2 nd Asia Conference on Algorithms, Computing and Machine Learning. Shanghai: ACM, 2023: 143-147.
    [33]
    ZHANG H, JIANG L, CHU X, et al. Combining physics-informed graph neural network and finite difference for solving forward and inverse spatiotemporal PDEs[J/OL]. 2024[2024-07-08]. https://arxiv.org/abs/2405.20000.
    [34]
    GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[J/OL]. 2017[2024-07-08]. https://arxiv.org/abs/1704.01212v2.
    [35]
    SANCHEZ-GONZALEZ A, GODWIN J, PFAFF T, et al. Learning to simulate complex physics with graph networks[C]//Proceedings of the 37 th International Conference on Machine Learning. 2020: 8459-468.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (26) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return