Citation: | SONG Shangxiao, JIANG Longxiang, WANG Liyuan, CHU Xinkun, ZHANG Hao. ROE-Scheme Physics-Augmented Graph Neural Networks in Solving Eulerian and Laminar Flow Incompressible NS Equations[J]. Applied Mathematics and Mechanics, 2025, 46(1): 55-71. doi: 10.21656/1000-0887.450098 |
[1] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378 : 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[2] |
KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3 : 422-440. doi: 10.1038/s42254-021-00314-5
|
[3] |
王江, 陈文. 基于组合神经网络的时间分数阶扩散方程计算方法[J]. 应用数学和力学, 2019, 40 (7): 741-750. doi: 10.21656/1000-0887.390288
WANG Jiang, CHEN Wen. A combined artificial neural network method for solving time fractional diffusion equations[J]. Applied Mathematics and Mechanics, 2019, 40 (7): 741-750. (in Chinese) doi: 10.21656/1000-0887.390288
|
[4] |
林云云, 郑素佩, 封建湖, 等. 间断问题扩散正则化的PINN反问题求解算法[J]. 应用数学和力学, 2023, 44 (1): 112-122. doi: 10.21656/1000-0887.430010
LIN Yunyun, ZHENG Supei, FENG Jianhu, et al. Diffusive regularization inverse PINN solutions to discontinuous problems[J]. Applied Mathematics and Mechanics, 2023, 44 (1): 112-122. (in Chinese) doi: 10.21656/1000-0887.430010
|
[5] |
DAFERMOS C M. Hyperbolic Conservation Laws in Continuum Physics[M]. Berlin: Springer, 2016.
|
[6] |
MAO Z, JAGTAP A D, KARNIADAKIS G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360 : 112789. doi: 10.1016/j.cma.2019.112789
|
[7] |
LEVEQUE R J. Finite-Volume Methods for Hyperbolic Problems[M]. Cambridge: Cambridge University Press, 2002.
|
[8] |
GODLEWSKI E, RAVIART P A. Numerical Approximation of Hyperbolic Systems of Conservation Laws[M]. New York: Springer, 1996.
|
[9] |
COCKBURN B, KARNIADAKIS G E, SHU C W. Discontinuous Galerkin Methods[M]. Berlin: Springer, 2000.
|
[10] |
MAGIERA J, RAY D, HESTHAVEN J S, et al. Constraint-aware neural networks for Riemann problems[J]. Journal of Computational Physics, 2020, 409 : 109345. doi: 10.1016/j.jcp.2020.109345
|
[11] |
SCHWANDER L, RAY D, HESTHAVEN J S. Controlling oscillations in spectral methods by local artificial viscosity governed by neural networks[J]. Journal of Computational Physics, 2021, 431 : 110144. doi: 10.1016/j.jcp.2021.110144
|
[12] |
BEZGIN D A, SCHMIDT S J, ADAMS N A. A data-driven physics-informed finite-volume scheme for nonclassical undercompressive shocks[J]. Journal of Computational Physics, 2021, 437 : 110324. doi: 10.1016/j.jcp.2021.110324
|
[13] |
BEZGIN D A, SCHMIDT S J, ADAMS N A. WENO3-NN: a maximum-order three-point data-driven weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2022, 452 : 110920. doi: 10.1016/j.jcp.2021.110920
|
[14] |
LIU L, LIU S, XIE H, et al. Discontinuity computing using physics-informed neural networks[J]. Journal of Scientific Computing, 2024, 98 : 22. doi: 10.1007/s10915-023-02412-1
|
[15] |
CAO W, SONG J, ZHANG W. A solver for subsonic flow around airfoils based on physics-informed neural networks and mesh transformation[J]. Physics of Fluids, 2024, 36 (2): 027134. doi: 10.1063/5.0188665
|
[16] |
HUANG H, LIU Y, YANG V. Neural networks with inputs based on domain of dependence and A converging sequence for solving conservation laws, part Ⅰ: 1D Riemann problems[J/OL]. 2021[2024-07-08].
|
[17] |
ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43 (2): 357-372. doi: 10.1016/0021-9991(81)90128-5
|
[18] |
GODUNOV S K. A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations[J]. Mathematics of the USSR-Sbornik, 1959, 47 : 271-306.
|
[19] |
VAN LEER B. Towards the Ultimate Conservative Difference Scheme I. The Quest of Monotonicity[M]. Berlin: Heidelberg, 1973.
|
[20] |
VAN LEER B. Towards the ultimate conservative difference scheme[J]. Journal of Computational Physics, 1997, 135 (2): 229-248. doi: 10.1006/jcph.1997.5704
|
[21] |
HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ[J]. Journal of Computational Physics, 1997, 131 (1): 3-47. doi: 10.1006/jcph.1996.5632
|
[22] |
LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115 (1): 200-212. doi: 10.1006/jcph.1994.1187
|
[23] |
LIU Y, SHU C W, TADMOR E, et al. Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction[J]. SIAM Journal on Numerical Analysis, 2007, 45 (6): 2442-2467. doi: 10.1137/060666974
|
[24] |
LIU Y, SHU C W, TADMOR E, et al. Non-oscillatory hierarchical reconstruction for central and finite volume schemes[J]. Communications in Computational Physics, 2007, 2 (5): 933-963.
|
[25] |
XU Z, LIU Y, SHU C W. Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells[J]. Journal of Computational Physics, 2009, 228 (6): 2194-2212. doi: 10.1016/j.jcp.2008.11.025
|
[26] |
YANG V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems[J]. Proceedings of the Combustion Institute, 2000, 28 (1): 925-942. doi: 10.1016/S0082-0784(00)80299-4
|
[27] |
WANG X, YANG V. Supercritical mixing and combustion of liquid-oxygen/kerosene bi-swirl injectors[J]. Journal of Propulsion and Power, 2016, 33 (2): 316-322.
|
[28] |
UNNIKRISHNAN U, HUO H, WANG X, et al. Subgrid scale modeling considerations for large eddy simulation of supercritical turbulent mixing and combustion[J]. Physics of Fluids, 2021, 33 (7): 075112. doi: 10.1063/5.0055751
|
[29] |
TEYSSIER R, COMMERÇON B. Numerical methods for simulating star formation[J]. Frontiers in Astronomy and Space Sciences, 2019, 6 : 51. doi: 10.3389/fspas.2019.00051
|
[30] |
BAR-SINAI Y, HOYER S, HICKEY J, et al. Learning data-driven discretizations for partial differential equations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (31): 15344-15349.
|
[31] |
高普阳, 赵子桐, 杨扬. 基于卷积神经网络模型数值求解双曲型偏微分方程的研究[J]. 应用数学和力学, 2021, 42 (9): 932-947. doi: 10.21656/1000-0887.420050
GAO Puyang, ZHAO Zitong, YANG Yang. Study on numerical solutions to hyperbolic partial differential equations based on the convolutional neural network model[J]. Applied Mathematics and Mechanics, 2021, 42 (9): 932-947. (in Chinese) doi: 10.21656/1000-0887.420050
|
[32] |
JIANG L, WANG L, CHU X, et al. PhyGNNet: solving spatiotemporal PDEs with physics-informed graph neural network[C]//Proceedings of the 2023 2 nd Asia Conference on Algorithms, Computing and Machine Learning. Shanghai: ACM, 2023: 143-147.
|
[33] |
ZHANG H, JIANG L, CHU X, et al. Combining physics-informed graph neural network and finite difference for solving forward and inverse spatiotemporal PDEs[J/OL]. 2024[2024-07-08].
|
[34] |
GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[J/OL]. 2017[2024-07-08].
|
[35] |
SANCHEZ-GONZALEZ A, GODWIN J, PFAFF T, et al. Learning to simulate complex physics with graph networks[C]//Proceedings of the 37 th International Conference on Machine Learning. 2020: 8459-468.
|