Volume 45 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
YAN Xiaoye, LAI Qi, MENG Yao, ZHANG Weisheng. Explicit Topology Optimization of Multi-Material Active Structures Based on Piezoelectric Actuation[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1372-1380. doi: 10.21656/1000-0887.450197
Citation: YAN Xiaoye, LAI Qi, MENG Yao, ZHANG Weisheng. Explicit Topology Optimization of Multi-Material Active Structures Based on Piezoelectric Actuation[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1372-1380. doi: 10.21656/1000-0887.450197

Explicit Topology Optimization of Multi-Material Active Structures Based on Piezoelectric Actuation

doi: 10.21656/1000-0887.450197
  • Received Date: 2024-07-08
  • Rev Recd Date: 2024-08-04
  • Publish Date: 2024-11-01
  • The lightweight structure design is a crucial consideration in the industrial field. Unlike passive structures that rely solely on material stiffness to resist external loads, active structures achieve lightweighting by active change of the internal force-driven deformation. An explicit topology optimization method was introduced for piezoelectric multi-material active structures with the moving morphable components (MMC) method. The proposed method minimizes the total mass of the active structure by simultaneously optimizing the structure topology and the distribution of piezoelectric actuators while satisfying the displacement constraints. To optimize the polarization characteristics for adaptive piezoelectric actuation under complex loading conditions, 3 independent sets of MMCs were utilized. These components describe the distributions of elastic and piezoelectric materials as well as the corresponding polarization characteristics, resulting in a composite active structure with explicit geometric descriptions. Numerical examples demonstrate that, compared to passive structures, multi-material active structures based on piezoelectric actuation can realize structural lightweighting more efficiently.
  • loading
  • [1]
    GOSSWEILER G R, BROWN C L, HEWAGE G B, et al. Mechanochemically active soft robots[J]. ACS Applied Materials & Interfaces, 2015, 7 (40): 22431-22435.
    [2]
    PREUMONT A. Vibration Control of Active Structures: an Introduction[M]. Array Cham: Springer, 2018.
    [3]
    REKSOWARDOJO A P, SENATORE G. Design of ultra-lightweight and energy-efficient civil structures through shape morphing[J]. Computers & Structures, 2023, 289 : 107149.
    [4]
    SOFLA A Y N, MEGUID S A, TAN K T, et al. Shape morphing of aircraft wing: status and challenges[J]. Materials & Design, 2010, 31 (3): 1284-1292.
    [5]
    SIGMUND O. Design of multiphysics actuators using topology optimization, part Ⅰ: one-material structures[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190 (49/50): 6577-6604.
    [6]
    SIGMUND O. Design of multiphysics actuators using topology optimization, part Ⅱ: two-material structures[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190 (49/50): 6605-6627.
    [7]
    JENSEN P D L, WANG F, DIMINO I, et al. Topology optimization of large-scale 3D morphing wing structures[J]. Actuators, 2021, 10 (9): 217. doi: 10.3390/act10090217
    [8]
    WANG Y, SIGMUND O. Topology optimization of multi-material active structures to reduce energy consumption and carbon footprint[J]. Structural and Multidisciplinary Optimization, 2024, 67 (1): 5. doi: 10.1007/s00158-023-03698-3
    [9]
    WANG Y, SIGMUND O. Multi-material topology optimization for maximizing structural stability under thermo-mechanical loading[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 407 : 115938. doi: 10.1016/j.cma.2023.115938
    [10]
    LIND C. Two decades of negative thermal expansion research: where do we stand?[J]. Materials, 2012, 5 (6): 1125-1154. doi: 10.3390/ma5061125
    [11]
    黄志丹, 向楠, 苏程. 主动约束阻尼开口柱壳的NLMS反馈减振控制[J]. 应用数学和力学, 2021, 42 (7): 686-695. doi: 10.21656/1000-0887.410312

    HUANG Zhidan, XIANG Nan, SU Cheng. NLMS feedback vibration control of open cylindrical shells with active constrained layer damping[J]. Applied Mathematics and Mechanics, 2021, 42 (7): 686-695. (in Chinese) doi: 10.21656/1000-0887.410312
    [12]
    WANG Y, LUO Z, ZHANG X, et al. Topological design of compliant smart structures with embedded movable actuators[J]. Smart Materials and Structures, 2014, 23 (4): 045024. doi: 10.1088/0964-1726/23/4/045024
    [13]
    ZHANG X, KANG Z. Dynamic topology optimization of piezoelectric structures with active control for reducing transient response[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 281 : 200-219. doi: 10.1016/j.cma.2014.08.011
    [14]
    MOLTER A, FONSECA J S O, FERNANDEZ L D S. Simultaneous topology optimization of structure and piezoelectric actuators distribution[J]. Applied Mathematical Modelling, 2016, 40 (9/10): 5576-5588.
    [15]
    GUO X, ZHANG W, ZHONG W. Doing topology optimization explicitly and geometrically: a new moving morphable components based framework[J]. Journal of Applied Mechanics, 2014, 81 (8): 081009. doi: 10.1115/1.4027609
    [16]
    ZHANG W, LAI Q, GUO X, et al. Topology optimization for the design of manufacturable piezoelectric energy harvesters using dual-moving morphable component method[J]. Journal of Mechanical Design, 2024, 146 (12): 121701. doi: 10.1115/1.4065610
    [17]
    HU X, LI Z, BAO R, et al. Stabilized time-series moving morphable components method for topology optimization[J]. International Journal for Numerical Methods in Engineering, 2024, 125 (20): e7562. doi: 10.1002/nme.7562
    [18]
    LI Z, HU X, CHEN W. Moving morphable curved components framework of topology optimization based on the concept of time series[J]. Structural and Multidisciplinary Optimization, 2023, 66 (1): 19. doi: 10.1007/s00158-022-03472-x
    [19]
    ZHANG W, SONG J, ZHOU J, et al. Topology optimization with multiple materials via moving morphable component (MMC) method[J]. International Journal for Numerical Methods in Engineering, 2018, 113 (11): 1653-1675. doi: 10.1002/nme.5714
    [20]
    HOMAYOUNI-AMLASHI A, SCHLINQUER T, MOHAND-OUSAID A, et al. 2D topology optimization MATLAB codes for piezoelectric actuators and energy harvesters[J]. Structural and Multidisciplinary Optimization, 2021, 63 (2): 983-1014. doi: 10.1007/s00158-020-02726-w
    [21]
    DU Z, CUI T, LIU C, et al. An efficient and easy-to-extend MATLAB code of the moving morphable component (MMC) method for three-dimensional topology optimization[J]. Structural and Multidisciplinary Optimization, 2022, 65 (5): 158. doi: 10.1007/s00158-022-03239-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (82) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return