Volume 46 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
DING Hui, LIU Lihan. The Transmission Eigenvalue Problem of Exterior Inverse Scattering in Fully Coated Inhomogeneous Media[J]. Applied Mathematics and Mechanics, 2025, 46(6): 781-790. doi: 10.21656/1000-0887.450207
Citation: DING Hui, LIU Lihan. The Transmission Eigenvalue Problem of Exterior Inverse Scattering in Fully Coated Inhomogeneous Media[J]. Applied Mathematics and Mechanics, 2025, 46(6): 781-790. doi: 10.21656/1000-0887.450207

The Transmission Eigenvalue Problem of Exterior Inverse Scattering in Fully Coated Inhomogeneous Media

doi: 10.21656/1000-0887.450207
Funds:

The National Science Foundation of China(12001075)

  • Received Date: 2024-07-12
  • Rev Recd Date: 2024-09-03
  • Available Online: 2025-06-30
  • The transmission eigenvalue problem of exterior inverse scattering in fully coated inhomogeneous media was studied. Firstly, a nonlinear 4th-order formulation was established based on the classical process, and the existence and discreteness were proved by the Lax-Milgram theorem and the Fredholm theory. Next, by means of an equivalent mixed formulation with an auxiliary variable, the problem is transformed into a linear eigenvalue problem, and an appropriate operator was constructed by the Riesz representation theorem and the Rellich-Kondrachov compactness theorem, etc. The compactness and coerciveness of the operators were proved with the Cauchy convergence criterion, the Brezzi theory and the Poincaré inequality.
  • loading
  • [2]CAKONI F, GINTIDES D, HADDAR H. The existence of an infinite discrete set of transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis,2010,42(1): 237-255.
    CAKONI F, CAYOREN M, COLTON D. Transmission eigenvalues and the nondestructive testing of dielectrics[J]. Inverse Problems,2008,24(6): 065016.
    [3]COLTON D, KRESS R. Inverse Acoustic and Electromagnetic Scattering Theory[M]. Berlin: Springer, 2019.
    [4]CAKONI F, COLTON D, HADDAR H. Inverse Scattering Theory and Transmission Eigenvalues[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2016.
    [5]SYLVESTER J. Discreteness of transmission eigenvaluesvia upper triangular compact operators[J]. SIAM Journal on Mathematical Analysis,2012,44(1): 341-354.
    [6]张亚林. 逆散射理论中传播特征值问题的若干结果[D]. 天津: 天津大学, 2015.(ZHANG Yalin. Some results on the transmission eigenvalue problem in inverse scattering theory[D]. Tianjin: Tianjin University, 2015. (in Chinese))
    [7]COLTON D, LEUNG Y J. Complex eigenvalues and the inverse spectral problem for transmission eigenvalues[J]. Inverse Problems,2013,29(10): 104008.
    [8]ROBBIANO L. Spectral analysis of the interior transmission eigenvalue problem[J]. Inverse Problems,2013,29(10): 104001.
    [9]CAKONI F, COLTON D, MONK P. The determination of the surface conductivity of a partially coated dielectric[J]. SIAM Journal on Applied Mathematics,2005,65(3): 767-789.
    [10]陈林冲, 李小林. 二维Helmholtz方程的插值型边界无单元法[J]. 应用数学和力学, 2018,39(4): 470-484.(CHEN Linchong, LI Xiaolin. An interpolating boundary element-free method for 2D Helmholtz equations[J]. Applied Mathematics and Mechanics,2018,39(4): 470-484. (in Chinese))
    [11]LIU Q, LI T X, ZHANG S. A mixed element scheme for the Helmholtz transmission eigenvalue problem for anisotropic media[J]. Inverse Problems,2023,39(5): 055005.
    [12]戴海, 潘文峰. 谱元法求解Helmholtz方程透射特征值问题[J]. 应用数学和力学, 2018,39(7): 833-840.(DAI Hai, PAN Wenfeng. A spectral element method for transmission eigenvalue problems of the Helmholtz equation[J]. Applied Mathematics and Mechanics,2018,39(7): 833-840. (in Chinese))
    [13]BONDARENKO O, HARRIS I, KLEEFELD A. The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary[J]. Applicable Analysis,2017,96(1): 2-22.
    [14]HARRIS I. Analysis of two transmission eigenvalue problems with a coated boundary condition[J]. Applicable Analysis,2021,100(9): 1996-2019.
    [15]XIANG J, YAN G. The interior transmission eigenvalue problem for an anisotropic medium by a partially coated boundary[J]. Acta Mathematica Scientia,2024,44(1): 339-354.
    [16]SUN J, ZHOU A. Finite Element Methods for Eigenvalue Problems[M]. New York: Chapman and Hall, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (5) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return