Citation: | CHEN Shenshen, HU Ying, ZHANG Wei, WANG Fangxin. A Cell-Based Smoothed Radial Point Interpolation Method for Upper Bound Limit Analysis[J]. Applied Mathematics and Mechanics, 2025, 46(6): 791-799. doi: 10.21656/1000-0887.450222 |
LIU F T, ZHAO J D. Upper bound limit analysis using radial point interpolation meshless method and nonlinear programming[J].International Journal of Mechanical Sciences,2013,70: 26-38.
|
[2]ZHOU S T, LIU Y H. Upper bound limit analysis based on the natural element method[J].Acta Mechanica Sinica,2012,28(5):1398-1415.
|
[3]YUAN S, DU J N. Upper bound limit analysis using the weak form quadrature element method[J].Applied Mathematical Modelling,2018,56: 551-563.
|
[4]YUAN S, DU J N. Effective stress-based upper bound limit analysis of unsaturated soils using the weak form quadrature element method[J].Computers and Geotechnics,2018,98: 172-180.
|
[5]ZHANG X F, LIU Y H, ZHAO Y N, et al. Lower bound limit analysis by the symmetric Galerkin boundary element method and the complex method[J].Computer Methods in Applied Mechanics and Engineering,2002,191(17/18): 1967-1982.
|
[6]PANZECA T, PARLAVECCHIO E, ZITO L, et al. Lower bound limit analysis by BEM: convex optimization problem and incremental approach[J].Engineering Analysis With Boundary Elements,2013,37(3): 558-568.
|
[7]WANG L H, HU M H, ZHONG Z, et al. Stabilized Lagrange interpolation collocation method: a meshfree method incorporating the advantages of finite element method[J].Computer Methods in Applied Mechanics and Engineering,2023,404: 115780.
|
[8]陈卫, 汤智宏, 彭林欣. 基于分层法的功能梯度三明治壳线性弯曲无网格分析 [J]. 应用数学和力学, 2024,45(5): 539-553. (CHEN Wei, TANG Zhihong, PENG Linxin. Linear bending analysis of functionally graded sandwich shells with the meshless method based on the layer-wise theory [J].Applied Mathematics and Mechanics,2024,45(5): 539-553. (in Chinese))
|
[9]陈虹伶, 李小林. 分数阶Cable方程的有限点法分析[J]. 应用数学和力学, 2022,43(6): 700-706.(CHEN Hongling, LI Xiaolin. Analysis of the finite point method for fractional cable equations[J].Applied Mathematics and Mechanics,2022,43(6): 700-706. (in Chinese))
|
[10]WU J, WANG D. An accuracy analysis of Galerkin meshfree methods accounting for numerical integration[J].Computer Methods in Applied Mechanics and Engineering,2021,375: 113631.
|
[11]陈莘莘, 王崴. 基于自然单元法的轴对称结构极限上限分析[J]. 计算力学学报, 2020,37(2): 159-164.(CHEN Shenshen, WANG Wei. Upper bound limit analysis of axisymmetric structures based on natural element method[J].Chinese Journal of Computational Mechanics,2020,37(2): 159-164. (in Chinese))
|
[12]CHEN S S, LIU Y H, CEN Z Z. Lower bound limit analysis by using the EFG method and nonlinear programming[J].International Journal for Numerical Methods in Engineering,2008,74: 391-415.
|
[13]LE C V, GILBERT M, ASKES H. Limit analysis of plates using the EFG method and second-order cone programming[J].International Journal for Numerical Methods in Engineering,2009,78(13): 1532-1552.
|
[14]CHEN S S, XU M Y, ZHU X Y. A cell-based smoothed radial point interpolation method applied to kinematic limit analysis of thin plates[J].Engineering Analysis With Boundary Elements,2022,143: 710-718.
|
[15]LE C V, HO P L H, NGUYEN P H, et al. Yield design of reinforced concrete slabs using a rotation-free meshfree method[J].Engineering Analysis With Boundary Elements,2015,50: 231-238.
|
[16]CUI X Y, LIU G R, LI G Y. A cell-based smoothed radial point interpolation method (CS-RPIM) for static and free vibration of solids[J].Engineering Analysis With Boundary Elements,2010,34(2): 144-157.
|
[17]CUI X Y, LIU G R, LI G Y, et al. A thin plate formulation without rotation DOFs based on the radial point interpolation method and triangular cells[J].International Journal for Numerical Methods in Engineering,2011,85(8): 958-986.
|
[18]LIU G R. A generalized gradient smoothing technique and smoothed bilinear form for Galerkin formulation of a wide class of computational methods[J].International Journal of Computational Methods,2008,5(2): 199-236.
|
[19]WANG J G, LIU G R. A point interpolation meshless method based on radial basis functions[J].International Journal for Numerical Methods in Engineering,2002,54(11): 1623-1648.
|
[20]姚凌云, 于德介, 臧献国. 声学数值计算的分区光滑径向点插值无网格法[J]. 振动与冲击, 2011,30(10): 188-192.(YAO Lingyun, YU Dejie, ZANG Xianguo. Numerical computation for acoustic problems with a cell-based smoothed radial point interpolation method[J].Journal of Vibration and Shock,2011,30(10): 188-192. (in Chinese))
|
[21]TAO D S, ZHANG G Y, CHEN Z C, et al. A cell-based smoothed radial point interpolation method using condensed shape functions for free and forced vibration analysis of solids[J].Engineering Analysis With Boundary Elements,2019,102: 29-38.
|
[22]WU G, ZHANG J, LI Y L, et al. Analysis of transient thermo-elastic problems using a cell-based smoothed radial point interpolation method[J].International Journal of Computational Methods,2016,13(5): 1650023.
|
[23]FENG S Z, LI A M. Analysis of thermal and mechanical response in functionally graded cylinder using cell-based smoothed radial point interpolation method[J].Aerospace Science and Technology,2017,65: 46-53.
|
[24]TOOTOONCHI A, KHOSHGHALB A, LIU G R, et al. A cell-based smoothed point interpolation method for flow-deformation analysis of saturated porous media[J].Computers and Geotechnics,2016,75: 159-173.
|
[25]MITTELMANN H D. An independent benchmarking of SDP and SOCP solvers[J].Mathematical Programming,2003,95(2): 407-430.
|
[26]LE C V, NGUYEN-XUAN H, ASKES H, et al. A cell-based smoothed finite element method for kinematic limit analysis[J].International Journal for Numerical Methods in Engineering,2010,83(12): 1651-1674.
|
[27]CIRIA H, PERAIRE J, BONET J. Mesh adaptive computation of upper and lower bounds in limit analysis[J].International Journal for Numerical Methods in Engineering,2008,75(8): 899-944.
|