Volume 46 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
LI Qian, WANG Guixia, WANG Yichen. A Conformal Generalized Multi-Symplectic Fourier Pseudo-Spectral Algorithm for Damping eKdV-Burgers Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1464-1479. doi: 10.21656/1000-0887.450263
Citation: LI Qian, WANG Guixia, WANG Yichen. A Conformal Generalized Multi-Symplectic Fourier Pseudo-Spectral Algorithm for Damping eKdV-Burgers Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1464-1479. doi: 10.21656/1000-0887.450263

A Conformal Generalized Multi-Symplectic Fourier Pseudo-Spectral Algorithm for Damping eKdV-Burgers Equations

doi: 10.21656/1000-0887.450263
Funds:

The National Science Foundation of China(62161045)

  • Received Date: 2024-09-29
  • Rev Recd Date: 2024-12-24
  • Available Online: 2025-12-05
  • Based on the conformal generalized multi-symplectic theory for Hamiltonian systems, a class of conformal generalized multi-symplectic pseudo-spectral algorithms for damping eKdV-Burgers the equations were studied. Firstly, through introduction of intermediate variables, the equation was transformed into a conformal generalized multi-symplectic Hamiltonian system satisfying local conservation, and the Strang splitting method was used to split it into a conservative subsystem and a dissipative subsystem. Furthermore, the Fourier pseudo-spectral method was applied spatially and the hidden midpoint method applied temporally to discretize the system to obtain the conformal generalized multi-symplectic Fourier pseudo-spectral scheme, which meets the global conformal mass conservation law and the momentum conservation law under the periodic boundary conditions. Numerical examples show that, the algorithm is effective and can maintain the mass and momentum decay characteristics of the system.
  • loading
  • 冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M]. 杭州: 浙江科学技术出版社, 2003.(FENG Kang, QIN Mengzhao. Symplectic Geometric Algorithms for Hamiltonian Systems[M]. Hangzhou: Zhejiang Science and Technology Publishing House, 2003. (in Chinese))
    [2]秦孟兆, 王雨顺. 偏微分方程中的保结构算法[M]. 杭州: 浙江科学技术出版社, 2011. (QIN Mengzhao, WANG Yushun. Structure-Preserving Algorithm for Partial Differential Equation[M]. Hangzhou: Zhejiang Science and Technology Publishing House, 2011. (in Chinese))
    [3]HAIRER E, LUBICH C, WANNER G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations[M]. 2nd ed. Berlin Heidlberg: Springer, 2006.
    [4] MCLACHLAN R I, QUISPEL G R W. Splittingmethods[J]. Acta Numerica,2002,11: 341-434.
    [5]王雨顺, 秦孟兆. 变分与无限维系统的高精度辛格式[J]. 计算数学, 2002,24(4): 431-436.(WANG Yushun, QIN Mengzhao. Variation and high order accuracy symplectic scheme for infinite dimensional system[J]. Mathematica Numerica Sinica,2002,24(4): 431-436. (in Chinese))
    [6] TANG Y F, VZQUEZ L, ZHANG F, et al.Symplectic methods for the nonlinear Schrdinger equation[J]. Computers & Mathematics With Applications,1996,32(5): 73-83.
    [7] SHANG Z J. KAM theorem of symplectic algorithms for Hamiltoniansystems[J]. Numerische Mathematik,1999,83(3): 477-496.
    [8] BRIDGES T J, REICH S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conservesymplecticity[J]. Physics Letters A,2001,284(4/5): 184-193.
    [9] BRIDGES T J. Multi-symplectic structures and wavepropagation[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1997,121(1): 147-190.
    [10]MARSDEN J E, PATRICK G W, SHKOLLER S. Multisymplectic geometry, variational integrators, and nonlinear PDEs[J]. Communications in Mathematical Physics,1998,199(2): 351-395.
    [11]MARSDEN J E, PEKARSKY S, SHKOLLER S, et al. Variational methods,multisymplectic geometry and continuum mechanics[J]. Journal of Geometry and Physics,2001,38(3/4): 253-284.
    [12]王雨顺, 王斌, 秦孟兆. 2+1维sine-Gordon方程多辛格式的复合构造[J]. 中国科学(A辑), 2003,33(3): 272-281.(WANG Yushun, WANG Bin, QIN Mengzhao. Composite construction of multi-symplectic scheme for 2+1 dimensional sine-Gordon equation[J]. Science in China (Serises A),2003,33(3): 272-281. (in Chinese))
    [13]王雨顺, 王斌, 季仲贞. 孤立波方程的保结构算法[J]. 计算物理, 2004,21(5): 386-400.(WANG Yushun, WANG Bin, JI Zhongzhen. Structure preserving algorithms for soliton equations[J]. Chinese Journal of Computation Physics,2004,21(5): 386-400. (in Chinese))
    [14]王雨顺, 王斌, 秦孟兆. 偏微分方程的局部保结构算法[J]. 中国科学(A辑): 数学, 2008,38(4): 377-397.(WANG Yushun, WANG Bin, QIN Mengzhao. Local structure-preserving algorithm for partial differential equations[J]. Science in China (Series A): Mathematics,2008,38(4): 377-397. (in Chinese))
    [15]SUN Y J, QIN M Z. A multi-symplectic scheme for RLW equation[J]. Journal of Computational Mathematics,2004,22(4): 611-621.
    [16]胡伟鹏, 邓子辰. 无限维动力学系统的保结构分析方法[M]. 西安: 西北工业大学出版社, 2015. (HU Weipeng, 〖JP2〗DENG Zichen. Structure-Preserving Analysis Method for Infinite Dimensional Dynamic Systems[M]. 〖JP〗Xi’an: Northwestern Polytechnical University Press, 2015. (in Chinese))
    [17]胡伟鹏, 邓子辰, 李文成. KdV方程的多辛算法及其孤子解的数值模拟[J]. 西北工业大学学报, 2008,26(1): 128-131.(HU Weipeng, DENG Zichen, LI Wencheng. Multi-symplectic algorithm and simulation of soliton for KdV equation[J]. Journal of Northwestern Polytechnical University,2008,26(1): 128-131. (in Chinese))
    [18]何啸, 贾村, 孟静, 等. 内孤立波过陆架陆坡地形的数值模拟研究[J]. 海洋科学, 2023,47(3): 1-14.(HE Xiao, JIA Cun, MENG Jing, et al. Numerical investigation of the evolution of internal solitary waves over shelf-slope topography[J]. Marine Sciences,2023,47(3): 1-14. (in Chinese))
    [19]郭峰, 吴凤珍. MKdV方程的多辛格式[J]. 河南师范大学学报(自然科学版), 2005,33(1): 128-129.(GUO Feng, WU Fengzhen. Multi-symplectic scheme for MKdV equation[J]. Journal of Henan Normal University (Natural Science Edition), 2005,33(1): 128-129. (in Chinese))
    [20]胡伟鹏, 邓子辰, 李文成. 广义KdV-mKdV方程的多辛算法及孤波解数值模拟[J]. 西北工业大学学报, 2008,26(4): 450-453.(HU Weipeng, DENG Zichen, LI Wencheng. Multi-symplectic scheme and simulation of solitary wave solution for generalized KdV-mKdV equation[J]. Journal of Northwestern Polytechnical University,2008,26(4): 450-453. (in Chinese))
    [21]王晨逦, 王桂霞, 萨和雅. EKdV方程的高阶多辛保结构算法及孤立波解的数值模拟[J]. 内蒙古师范大学学报(自然科学汉文版), 2023,52(2): 119-126.(WANG Chenli, WANG Guixia, SA Heya. High order multisymplectic structure-preserving algorithm and numerical simulation of solitary wave solutions for EKdV equation[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2023,52(2): 119-126. (in Chinese))
    [22]HELFRICH K R, MELVILLE W K. On long nonlinear internal waves over slope-shelf topography[J]. Journal of Fluid Mechanics,1986,167: 285.
    [23]MCLACHLAN R, PERLMUTTER M. Conformal Hamiltonian systems[J]. Journal of Geometry and Physics,2001,39(4): 276-300.
    [24]BHATT A, FLOYD D, MOORE B E. Second order conformal symplectic schemes for damped Hamiltonian systems[J]. Journal of Scientific Computing,2016,66(3): 1234-1259.
    [25]MOORE B E. Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations[J]. Mathematics and Computers in Simulation,2009,80(1): 20-28.
    [26]MOORE B E, NOREA L, SCHOBER C M. Conformal conservation laws and geometric integration for damped Hamiltonian PDEs[J]. Journal of Computational Physics,2013,232(1): 214-233.
    [27]MOORE B E. Multi-conformal-symplectic PDEs and discretizations[J]. Journal of Computational and Applied Mathematics,2017,323: 1-15.
    [28]汪佳玲. 几个偏微分方程的保结构算法构造及误差分析[D]. 南京: 南京师范大学, 2017.(WANG Jialing. Construction and analysis of the structure-preserving algorithms for the Hamiltonian partial differential equations[D]. Nanjing: Nanjing Normal University, 2017. (in Chinese))
    [29]郑家栋, 张汝芬, 郭本瑜. SRLW方程的Fourier拟谱方法[J]. 应用数学和力学, 1989,10(9): 801-810.(ZHENG Jiadong, ZHANG Rufen, GUO Benyu. The Fourier pseudo-spectral method for the SRLW equation[J]. Applied Mathematics and Mechanics,1989,10(9): 801-810. (in Chinese))
    [30]邓镇国, 马和平. 广义KdV方程Fourier谱逼近的最优误差估计[J]. 应用数学和力学, 2009,30(1): 30-39.(DENG Zhenguo, MA Heping. Optimal error estimates for Fourier spectral approxiation of the generalized KdV equation[J]. Applied Mathematics and Mechanics,2009,30(1): 30-39. (in Chinese))
    [31]HU D D, CAI W J , XU Z Z, et al. Dissipation-preserving Fourier pseudo-spectral method for the space fractional nonlinear sine-Gordon equation with damping[J]. Mathematics and Computers in Simulation,2021,188: 35-59.
    [32]HE Y, ZHAO X F. Numerical methods for some nonlinear Schrdinger equations in soliton management[J]. Journal of Scientific Computing,2023,95(2): 61.
    [33]许壮志. 空间分数阶非线性Schrdinger方程保结构算法[D]. 南京: 南京师范大学, 2021.(XU Zhuangzhi. Structure-preserving algorithms for the space fractional nonlinear Schrdinger equation[D]. Nanjing: Nanjing Normal University, 2021. (in Chinese))
    [34]蔡树群. 内孤立波数值模式及其在南海区域的应用[M]. 北京: 海洋出版社, 2015.(CAI Shuqun. Numerical Model of Internal Solitary Waves and Its Application in South China Sea Region[M]. Beijing: Ocean Press, 2015. (in Chinese))
    [35]方欣华, 杜涛. 海洋内波基础和中国海内波[M]. 青岛: 中国海洋大学出版社, 2005.(FANG Xinhua, DU Tao. Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas[M]. Qingdao: China Ocean University Press, 2005. (in Chinese))
    [36]张善武. 基于变系数KdV-type理论模型的南海北部内孤立波传播演变过程研究[D]. 青岛: 中国海洋大学, 2014.(ZHANG Shanwu. Investigation of the propagation and evolution processes of internal solitary waves in the Northern South China Sea based on the variable-coefficients KdV-type theoretical models[D]. Qingdao: Ocean University of China, 2014. (in Chinese))
    [37]傅浩. 共形Hamilton系统的若干保结构算法研究[D]. 长沙: 国防科技大学, 2018.(FU Hao. Some structure-preserving algorithms for conformal Hamiltonian system[D]. Changsha: National University of Defense Technology, 2018. (in Chinese))
    [38]宋松和, 陈亚铭, 朱华君. KdV方程的多辛Fourier拟谱格式及其孤立波解的数值模拟[J]. 安徽大学学报(自然科学版), 2010,34(4): 1-7.(SONG Songhe, CHEN Yaming, ZHU Huajun. Multi-symplectic Fourier pseudospectral scheme and simulation of soliton solutions for the KdV equation[J]. Journal of Anhui University (Natural Sciences Edition), 2010,34(4): 1-7. (in Chinese))
    [39]向新民. 谱方法的数值分析[M]. 北京: 科学出版社, 2000. (XIANG Xinmin. Numerical Analysis of Spectral Method[M]. Beijing: Science Press, 2000. (in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (25) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return