Citation: | MA Peiyuan, LIN Yuliang, CHEN Rong. Parametric Analysis and Parameter Inversion of the Crystal Plasticity Constitutive Model for as-Cast TiZrNbV Refractory High Entropy Alloys[J]. Applied Mathematics and Mechanics, 2025, 46(5): 563-581. doi: 10.21656/1000-0887.450264 |
[1] |
SENKOV O N, SENKOVA S V, MIRACLE D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J]. Materials Science and Engineering: A, 2013, 565: 51-62. doi: 10.1016/j.msea.2012.12.018
|
[2] |
MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511. doi: 10.1016/j.actamat.2016.08.081
|
[3] |
SENKOV O N, RAO S, CHAPUT K J, et al. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys[J]. Acta Materialia, 2018, 151: 201-215. doi: 10.1016/j.actamat.2018.03.065
|
[4] |
唐宇, 王睿鑫, 李顺, 等. 高熵合金含能结构材料的潜力与挑战[J]. 含能材料, 2021, 29(10): 1008-1018. doi: 10.11943/CJEM2021087
TANG Yu, WANG Ruixin, LI Shun, et al. Potential and challenges of high-entropy alloy energetic structural materials[J]. Chinese Journal of Energetic Materials, 2021, 29(10): 1008-1018. (in Chinese) doi: 10.11943/CJEM2021087
|
[5] |
梁秀兵, 万义兴, 莫金勇, 等. 新型高温高熵合金材料研究进展[J]. 科技导报, 2021, 39(11): 96-108.
LIANG Xiubing, WAN Yixing, MO Jinyong, et al. Research progress in novel high-temperature high entropy alloys[J]. Science & Technology Review, 2021, 39(11): 96-108. (in Chinese)
|
[6] |
SENKOV O N, WOODWARD C F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy[J]. Materials Science and Engineering: A, 2011, 529: 311-320. doi: 10.1016/j.msea.2011.09.033
|
[7] |
MENG J, SHEN B, WANG J, et al. Energy-release behavior of TiZrNbV high-entropy alloy[J]. Intermetallics, 2023, 162: 108036. doi: 10.1016/j.intermet.2023.108036
|
[8] |
MENG J Y, HE J Z, ZHANG B, et al. The effect of Ti and Zr content on the structure, mechanics and energy-release characteristics of Ti-Zr-Ta alloys[J]. Defence Technology, 2024, 31: 343-350. doi: 10.1016/j.dt.2023.01.007
|
[9] |
XIE Q, ZHU Z, KANG G, et al. Crystal plasticity-based impact dynamic constitutive model of magnesium alloy[J]. International Journal of Mechanical Sciences, 2016, 119: 107-113. doi: 10.1016/j.ijmecsci.2016.10.012
|
[10] |
LU Y, ZHU Z, LI D, et al. Constitutive model of 42CrMo steel under a wide range of strain rates based on crystal plasticity theory[J]. Materials Science and Engineering: A, 2017, 679: 215-222. doi: 10.1016/j.msea.2016.09.117
|
[11] |
BOBBILI R, MADHU V. Constitutive modeling of dynamic flow behavior of Ti-5553 alloy[J]. Journal of Alloys and Compounds, 2019, 787: 260-266. doi: 10.1016/j.jallcom.2019.02.101
|
[12] |
RAABE D, SACHTLEBER M, ZHAO Z, et al. Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation[J]. Acta Materialia, 2001, 49(17): 3433-3441. doi: 10.1016/S1359-6454(01)00242-7
|
[13] |
BERTIN M, DU C, HOEFNAGELS J P M, et al. Crystal plasticity parameter identification with 3D measurements and integrated digital image correlation[J]. Acta Materialia, 2016, 116: 321-331. doi: 10.1016/j.actamat.2016.06.039
|
[14] |
GALLARDO-BASILE F J, ROTERS F, JENTNER R M, et al. Application of a nanoindentation-based approach for parameter identification to a crystal plasticity model for bcc metals[J]. Materials Science and Engineering: A, 2023, 881: 145373. doi: 10.1016/j.msea.2023.145373
|
[15] |
CHAKRABORTY A, EISENLOHR P. Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations[J]. European Journal of Mechanics-A/Solids, 2017, 66: 114-124. doi: 10.1016/j.euromechsol.2017.06.012
|
[16] |
HERRERA-SOLAZ V, LLORCA J, DOGAN E, et al. An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: application to AZ31 Mg alloy[J]. International Journal of Plasticity, 2014, 57: 1-15. doi: 10.1016/j.ijplas.2014.02.001
|
[17] |
JI H S, SONG Q H, GUPTA M K, et al. Grain scale modelling and parameter calibration methods in crystal plasticity finite element researches: a short review[J]. Journal of Advanced Manufacturing Science and Technology, 2021, 1(2): 2021005. doi: 10.51393/j.jamst.2021005
|
[18] |
SEDIGHIANI K, DIEHL M, TRAKA K, et al. An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves[J]. International Journal of Plasticity, 2020, 134: 102779. doi: 10.1016/j.ijplas.2020.102779
|
[19] |
SUN X C, WANG H M. A method for crystal plasticity model parameter calibration based on Bayesian optimization[M]//Magnesium Technology 2022. Cham: Springer International Publishing, 2022: 105-111.
|
[20] |
周瑞, 熊宇凯, 储节磊, 等. 基于机器学习和遗传算法的非局部晶体塑性模型参数识别[J]. 力学学报, 2024, 56(3): 751-762.
ZHOU Rui, XIONG Yukai, CHU Jielei, et al. Parameter identification of nonlocal crystal plastic model based on machine learning and genetic algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 751-762. (in Chinese)
|
[21] |
XU S, AN X, QIAO X, et al. Multi-output least-squares support vector regression machines[J]. Pattern Recognition Letters, 2013, 34(9): 1078-1084. doi: 10.1016/j.patrec.2013.01.015
|
[22] |
王兰, 董宜平, 曹进德. 基于准ARX模型和SVR算法的非线性系统切换控制[J]. 应用数学和力学, 2022, 43(11): 1281-1287. doi: 10.21656/1000-0887.430122
WANG Lan, DONG Yiping, CAO Jinde. Switching control of nonlinear systems based on the quasi-ARX model and the SVR algorithm[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1281-1287. (in Chinese) doi: 10.21656/1000-0887.430122
|
[23] |
章海明, 徐帅, 李倩, 等. 晶体塑性理论及模拟研究进展[J]. 塑性工程学报, 2020, 27(5): 12-32.
ZHANG Haiming, XU Shuai, LI Qian, et al. Progress of crystal plasticity theory and simulations[J]. Journal of Plasticity Engineering, 2020, 27(5): 12-32. (in Chinese)
|
[24] |
HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401-413. doi: 10.1016/0022-5096(72)90017-8
|
[25] |
REN K, LIU H, CHEN R, et al. Compression properties and impact energy release characteristics of TiZrNbV high-entropy alloy[J]. Materials Science and Engineering: A, 2021, 827: 142074. doi: 10.1016/j.msea.2021.142074
|
[26] |
WANG J, BAI S, TANG Y, et al. Effect of the valence electron concentration on the yield strength of Ti-Zr-Nb-V high-entropy alloys[J]. Journal of Alloys and Compounds, 2021, 868: 159190. doi: 10.1016/j.jallcom.2021.159190
|
[27] |
WEINBERGER C R, BOYCE B L, BATTAILE C C. Slip planes in BCC transition metals[J]. International Materials Reviews, 2013, 58(5): 296-314. doi: 10.1179/1743280412Y.0000000015
|
[28] |
CARROLL J D, CLARK B G, BUCHHEIT T E, et al. An experimental statistical analysis of stress projection factors in BCC tantalum[J]. Materials Science and Engineering: A, 2013, 581: 108-118. doi: 10.1016/j.msea.2013.05.085
|
[29] |
HUTCHINSON J W. Bounds and self-consistent estimates for creep of polycrystalline materials[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1976, 348(1652): 101-127.
|
[30] |
TERENTYEV D, XIAO X, DUBINKO A, et al. Dislocation-mediated strain hardening in tungsten: thermo-mechanical plasticity theory and experimental validation[J]. Journal of the Mechanics and Physics of Solids, 2015, 85: 1-15.
|
[31] |
LIM H, BATTAILE C C, CARROLL J D, et al. A physically based model of temperature and strain rate dependent yield in BCC metals: implementation into crystal plasticity[J]. Journal of the Mechanics and Physics of Solids, 2015, 74: 80-96. doi: 10.1016/j.jmps.2014.10.003
|
[32] |
PEIRCE D, ASARO R J, NEEDLEMAN A. An analysis of nonuniform and localized deformation in ductile single crystals[J]. Acta Metallurgica, 1982, 30(6): 1087-1119. doi: 10.1016/0001-6160(82)90005-0
|
[33] |
WU Y C, YAN Y F, LV Z M. Novel prediction model for steel mechanical properties with MSVR based on MIC and complex network clustering[J]. Metals, 2021, 11(5): 747. doi: 10.3390/met11050747
|
[34] |
KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126. doi: 10.1007/s11042-020-10139-6
|
[35] |
BIGGS M B. Sequential quadratic programming[M]//Nonlinear Optimization With Engineering Applications. Boston, MA: Springer US, 2008: 1-14.
|
[36] |
QUEY R, RENVERSADE L. Optimal polyhedral description of 3D polycrystals: method and application to statistical and synchrotron X-ray diffraction data[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 330: 308-333. doi: 10.1016/j.cma.2017.10.029
|
[37] |
SPETTL A, WERZ T, KRILL C E, et al. Parametric representation of 3D grain ensembles in polycrystalline microstructures[J]. Journal of Statistical Physics, 2014, 154(4): 913-928. doi: 10.1007/s10955-013-0893-7
|
[38] |
王姝予, 宋世杰, 陆晓翀, 等. CrMnFeCoNi高熵合金拉伸断裂的晶体塑性有限元模拟[J]. 机械工程学报, 2021, 57(22): 43-51.
WANG Shuyu, SONG Shijie, LU Xiaochong, et al. Tensile fracture behavior of the CrMnFeCoNi high entropy alloy: a crystal plasticity finite element simulation[J]. Journal of Mechanical Engineering, 2021, 57(22): 43-51. (in Chinese)
|
[39] |
HU P, LIU Y, ZHU Y, et al. Crystal plasticity extended models based on thermal mechanism and damage functions: application to multiscale modeling of aluminum alloy tensile behavior[J]. International Journal of Plasticity, 2016, 86: 1-25. doi: 10.1016/j.ijplas.2016.07.001
|
[40] |
TIAN L Y, WANG G, HARRIS J S, et al. Alloying effect on the elastic properties of refractory high-entropy alloys[J]. Materials & Design, 2017, 114: 243-252.
|
[41] |
范婉婉, 王涛, 侯洁, 等. 基于CPRVE模型的304不锈钢极薄箔材参数标定[J]. 塑性工程学报, 2019, 26(4): 268-273.
FAN Wanwan, WANG Tao, HOU Jie, et al. Parameters calibration of 304 stainless steel ultra-thin foil based on CPRVE model[J]. Journal of Plasticity Engineering, 2019, 26(4): 268-273. (in Chinese)
|
[42] |
惠文. 基于CPFEM的TA15钛合金高温塑性变形研究[D]. 合肥: 合肥工业大学, 2013.
HUI Wen. Rsesearch on the plastic deformation of TA15 titanium alloy at high temperature using CPFEM[D]. Hefei: Hefei University of Technology, 2013. (in Chinese)
|
[43] |
XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
|