Volume 46 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
HE Liang, GUO Xiaole, SUN Xiangkai. A Perturbed Primal-Dual Dynamical System for Solving Convex-Concave Bilinear Saddle Point Problems[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1064-1072. doi: 10.21656/1000-0887.450318
Citation: HE Liang, GUO Xiaole, SUN Xiangkai. A Perturbed Primal-Dual Dynamical System for Solving Convex-Concave Bilinear Saddle Point Problems[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1064-1072. doi: 10.21656/1000-0887.450318

A Perturbed Primal-Dual Dynamical System for Solving Convex-Concave Bilinear Saddle Point Problems

doi: 10.21656/1000-0887.450318
  • Received Date: 2024-11-25
  • Rev Recd Date: 2024-12-16
  • Available Online: 2025-09-10
  • A 2nd-order inertial primal-dual dynamical system with external perturbations for solving convex-concave bilinear saddle point problems was investigated. Firstly, the existence and uniqueness of the global strong solution of the dynamical system was established. Then, with integrable assumption on perturbation parameters, the fast convergence rates of the primal-dual gap function and the norms of velocity vectors along the trajectories generated by the dynamical system were obtained. Numerical experiments show that, the dynamical system has fast convergence rates under different kinds of perturbations.
  • loading
  • POLYAK B T. Some methods of speeding up the convergence of iteration methods[J].USSR Computational Mathematics and Mathematical Physics,1964,4(5): 1-17.
    [2]SU W, BOYD S, CANDES E J. A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights[J].Journal of Machine Learning Research,2016,17(153): 1-43.
    [3]ATTOUCH H, CHBANI Z, PEYPOUQUET J, et al. Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[J].Mathematical Programming,2018,168(1): 123-175.
    [4]XU B, WEN B. On the convergence of a class of inertial dynamical systems with Tikhonov regularization[J].Optimization Letters,2021,15(6): 2025-2052.
    [5]SHI B, DU S S, JORDAN M I, et al. Understanding the acceleration phenomenon via high-resolution differential equations[J].Mathematical Programming,2022,195(1): 79-148.
    [6]LUO H, CHEN L. From differential equation solvers to accelerated first-order methods for convex optimization[J].Mathematical Programming,2022,195(1): 735-781.
    [7]ATTOUCH H, BOT R I, CSETNEK E R. Fast optimization via inertial dynamics with closed-loop damping[J].Journal of the European Mathematical Society,2023,25(5): 1985-2056.
    [8]ZENG X, LEI J, CHEN J. Dynamical primal-dual Nesterov accelerated method and its application to network optimization[J].IEEE Transactions on Automatic Control,2023,68(3): 1760-1767.
    [9]BOT R I, NGUYEN D K. Improved convergence rates and trajectory convergence for primal-dual dynamical systems with vanishing damping[J].Journal of Differential Equations,2021,303: 369-406.
    [10]HE X, HU R, FANG Y P. “Second-order primal” + “first-order dual” dynamical systems with time scaling for linear equality constrained convex optimization problems[J].IEEE Transactions on Automatic Control,2022,67(8): 4377-4383.
    [11]HULETT D A, NGUYEN D K. Time rescaling of a primal-dual dynamical system with asymptotically vanishing damping[J].Applied Mathematics and Optimization,2023,88(2): 27.
    [12]HE X, TIAN F, LI A Q, et al.Convergence rates of mixed primal-dual dynamical systems with Hessian driven damping[J].Optimization,2025,74(2): 365-390.
    [13]ATTOUCH H, CHBANI Z, FADILI J, et al. Fast convergence of dynamical ADMM via time scaling of damped inertial dynamics[J].Journal of Optimization Theory and Applications,2022,193(1): 704-736.
    [14]HARAUX A.Systèmes Dynamiques Dissipatifs et Applications[M]. Paris: Elsevier Masson, 1991.
    [15]BREZIS H.Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert[M]. Amsterdam: North Holland Publishing Company, 1973.
    [16]HE X, HU R, FANG Y P. Inertial primal-dual dynamics with damping and scaling for linearly constrained convex optimization problems[J].Applicable Analysis,2023,102(15): 4114-4139.
    [17]ATTOUCH H, PEYPOUQUET J, REDONT P. Fast convex optimization via inertial dynamics with Hessian driven damping[J].Journal of Differential Equations,2016,261(10): 5734-5783.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (21) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return