Volume 46 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
LI Jianyu, FU Jiexiang, HAO Xinye, LI Guangli. A Digital Twin Modeling Approach for Structural Heat Conduction Analysis Based on Stochastic Modeling and Bayesian Inference[J]. Applied Mathematics and Mechanics, 2025, 46(8): 983-998. doi: 10.21656/1000-0887.460055
Citation: LI Jianyu, FU Jiexiang, HAO Xinye, LI Guangli. A Digital Twin Modeling Approach for Structural Heat Conduction Analysis Based on Stochastic Modeling and Bayesian Inference[J]. Applied Mathematics and Mechanics, 2025, 46(8): 983-998. doi: 10.21656/1000-0887.460055

A Digital Twin Modeling Approach for Structural Heat Conduction Analysis Based on Stochastic Modeling and Bayesian Inference

doi: 10.21656/1000-0887.460055
Funds:

The National Science Foundation of China(12002347)

  • Received Date: 2025-03-24
  • Rev Recd Date: 2025-05-22
  • Available Online: 2025-09-10
  • The accurate prediction of structural heat transfer temperature fields under extreme thermal environments is a critical foundation for evaluating the thermo-mechanical performance of equipment. The digital twin technology enables high-precision dynamic reconstruction of temperature fields through the deep integration of observed data and simulation models. However, digital twin models for predicting structural heat transfer temperature fields with multi-source uncertainties, such as observation noise, model parameter uncertainty, and boundary condition disturbances, are still relatively scarce. Aimed to construct a heat conduction digital twin model with uncertainty quantification, a data-model fusion method combined with stochastic heat conduction analysis was proposed based on the Bayesian inference framework. First, a Gaussian random perturbation heat source term was introduced into the heat conduction equation to simulate uncertainty factors not quantified by the original model. Second, the stochastic heat conduction model was solved with the stochastic finite element method to obtain a prior distribution of the temperature field incorporating physical information. Finally, based on Bayes’ theorem, the noisy observation data was fused with the model-predicted prior distribution, and an analytical expression for the posterior distribution of the temperature field was derived for the Gaussian case. The results of 1D and 2D heat conduction examples demonstrate that, the proposed method not only achieves high-precision prediction of the temperature field but also effectively quantifies the uncertainty of the prediction results.
  • loading
  • [2]马晗, 方芳, 陈强, 等. 空天飞行器热防护与热管理技术分析与展望[J]. 空天技术, 2023(1): 98-106.(MA Han, FANG Fang, CHEN Qiang, et al. Analysis and prospect on thermal protection and thermal management technologies of aerospace vehicles[J].Aerospace Technology,2023(1): 98-106. (in Chinese))
    操小龙, 肖志祥. 组合动力空天飞行器极端服役环境下的关键力学问题[J]. 空天技术, 2023(2): 1-9.(CAO Xiaolong, XIAO Zhixiang. Key mechanical problems of combined power aerospace vehicles in the extreme service environment[J].Aerospace Technology,2023

    (2): 1-9. (in Chinese))
    [3]全栋梁, 赵雄涛, 张宇鹏. 空天飞行器结构与热防护系统健康监测技术的需求和挑战[J]. 空天技术, 2023(1): 84-97.(QUAN Dongliang, ZHAO Xiongtao, ZHANG Yupeng. Demands and challenges of health monitoring technology for the structure and thermal protection system of aerospace vehicle[J].Aerospace Technology,2023(1): 84-97. (in Chinese))
    [4]秦强, 成竹. 考虑认知不确定性的热防护结构瞬态温度场分析[J]. 航空科学技术, 2023,34(5): 61-66.(QIN Qiang, CHENG Zhu. Transient temperature field analysis of thermal protection structure considering epistemic uncertainty[J].Aeronautical Science & Technology,2023,34(5): 61-66. (in Chinese))
    [5]XIU D, KARNIADAKIS G E. A new stochastic approach to transient heat conduction modeling with uncertainty[J].International Journal of Heat and Mass Transfer,2003,46(24): 4681-4693.
    [6]SILVA R L S, VERHOOSEL C, QUAEGHEBEUR E. Bayesian estimation and uncertainty quantification of a temperature-dependent thermal conductivity[Z].arXiv: 2024, 240312696.
    [7]HUANG M, LI Z, LI J, et al. Uncertainty quantification and sensitivity analysis of aerothermal performance for the turbine blade squealer tip[J].International Journal of Thermal Sciences,2022,175: 107460.
    [8]JIANG X C, WANG X, WEN Z M, et al. Practical uncertainty quantification for space-dependent inverse heat conduction problemvia ensemble physics-informed neural networks[J].International Communications in Heat and Mass Transfer,2023,147: 106940.
    [9]GRIEVES M. Digital twin: manufacturing excellence through virtual factory replication[Z]. Digital twin white paper, 2014.
    [10]陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018,24(1): 1-18.(TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J].Computer Integrated Manufacturing Systems,2018,24(1): 1-18. (in Chinese))
    [11]TAO F, ZHANG H, ZHANG C Y. Advancements and challenges of digital twins in industry[J].Nature Computational Science,2024,4(3): 169-177.
    [12]FERRARI A, WILLCOX K. Digital twins in mechanical and aerospace engineering[J].Nature Computational Science,2024,4(3): 178-183.
    [13]THELEN A, ZHANG X, FINK O, et al. A comprehensive review of digital twin, part 1: modeling and twinning enabling technologies[J].Structural and Multidisciplinary Optimization,2022,65(12): 354.
    [14]THELEN A, ZHANG X, FINK O, et al. A comprehensive review of digital twin, part 2: roles of uncertainty quantification and optimization, a battery digital twin, and perspectives[J].Structural and Multidisciplinary Optimization,2023,66(1): 1.
    [15]董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021,42(3): 023981.(DONG Leiting, ZHOU Xuan, ZHAO Fubin, et al. Key technologies for modeling and simulation of airframe digital twin[J].Acta Aeronautica et Astronautica Sinica,2021,42(3): 023981. (in Chinese))
    [16]田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024,45(7): 429134.(TIAN Kuo, SUN Zhiyong, LI Zengcong. High-precision digital twin method for structural static test monitoring[J].Acta Aeronautica et Astronautica Sinica,2024,45(7): 429134. (in Chinese))
    [17]WANG S, LAI X, HE X, et al. Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model[J].Journal of Mechanical Design,2022,144(3): 031703.
    [18]NAROUIE V B, WESSELS H, RMER U. Inferring displacement fields from sparse measurements using the statistical finite element method[J].Mechanical Systems and Signal Processing,2023,200: 110574.
    [19]李宏坤, 魏代同, 陈玉刚, 等. 数字孪生驱动的旋转叶盘振动状态全景感知方法[J]. 机械工程学报, 2023,59(21): 270-282.(LI Hongkun, WEI Daitong, CHEN Yugang, et al. A full-field sensing method for vibration state of rotating bladed disks driven by digital twin[J].Journal of Mechanical Engineering,2023,59(21): 270-282.(in Chinese))
    [20]王青山, 严波, 陈岩, 等. 基于降阶模型和数据驱动的动态结构数字孪生方法[J]. 应用数学和力学, 2023,44(7): 757-768.(WANG Qingshan, YAN Bo, CHEN Yan, et al. A digital twin method for dynamic structures based on reduced order models and data driving[J].Applied Mathematics and Mechanics,2023,44(7): 757-768. (in Chinese))
    [21]FARAGHER R. Understanding the basis of the Kalman filter via a simple and intuitive derivation[J].IEEE Signal Processing Magazine,2012,29(5): 128-132.
    [22]KAPTEYN M G, PRETORIUS J V R, WILLCOX K E. A probabilistic graphical model foundation for enabling predictive digital twins at scale[J].Nature Computational Science,2021,1(5): 337-347.
    [23]BLOCKLEY R, SHYY W. 航空航天科技出版工程3: 结构技术[M]. 北京: 北京理工大学出版社, 2016.(BLOCKLEY R, SHYY W.Encyclopedia of Aerospace Engineering 3: Structural Technology[M]. Beijing: Beijing Institute of Technology Press, 2016.(in Chinese))
    [24]张靖周. 高等传热学[M]. 2版. 北京: 科学出版社, 2015.(ZHANG Jingzhou.Advanced Heat Transfer[M]. 2nd ed. Beijing: Science Press, 2015. (in Chinese))
    [25]LORD G J, POWELL C E, SHARDLOW T.An Introduction to Computational Stochastic PDEs[M]. Cambridge University Press, 2014.
    [26]RASMUSSEN C E, WILLIAMS C K I.Gaussian Processes for Machine Learning[M]. The MIT Press, 2006.
    [27]BATHE K J.Finite Element Procedures[M]. Klaus-Jurgen Bathe, 2006.
    [28]SULLIVAN T J.Introduction to Uncertainty Quantification[M]. Springer, 2015.
    [29]BROOKS S, GELMAN A, JONES G, et al.Handbook of Markov Chain Monte Carlo[M]. Chapman and Hall/CRC, 2011.
    [30]NOCEDAL J,WRIGHT S J.Numerical Optimization[M]. Springer, 2006.
    [31]KENNEDY M C, O’HAGAN A. Bayesian calibration of computer models[J].Journal of the Royal Statistical Society Series B:Statistical Methodology,2001,63(3): 425-464.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (13) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return