Faiza A. Salama. Effect of Thermal Conductivity on Heat Transfer for a Power-Law Non-Newtonian Fluid Over a Continuous Stretched Surface With Various Injection Parameter[J]. Applied Mathematics and Mechanics, 2010, 31(8): 917-923. doi: 10.3879/j.issn.1000-0887.2010.08.004
Citation: Faiza A. Salama. Effect of Thermal Conductivity on Heat Transfer for a Power-Law Non-Newtonian Fluid Over a Continuous Stretched Surface With Various Injection Parameter[J]. Applied Mathematics and Mechanics, 2010, 31(8): 917-923. doi: 10.3879/j.issn.1000-0887.2010.08.004

Effect of Thermal Conductivity on Heat Transfer for a Power-Law Non-Newtonian Fluid Over a Continuous Stretched Surface With Various Injection Parameter

doi: 10.3879/j.issn.1000-0887.2010.08.004
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-05-18
  • Publish Date: 2010-08-15
  • An analysis of the steady two-dimen sional non-Newtonian flow on a power-lawstretched surface with suction or injection was considered. The thermal conductivity was assumed to vary as a linear function of temperature. The transformed governing equations in the present study were solved numerically by using the Runge-Kutta method. Some of the results obtained for a special case of the problem were compared to the results published in a previous work and were found to be in excellent agreement. Two cases were considered, one corre-sponding to a cooled surface temperature and the other, to a uniform surface temperature. The numerical results show that variable thermal conductivity parameter B, injection parameterd and the power-law indexn have sign ificant in fluences on the temperature profiles and the Nus-seltnumber in the above two cases.
  • loading
  • [1]
    Fox V G, Erickson L E, Fan L T. The laminar boundary layer on a moving continuous flat sheet immersed in a non-Newtonian fluid[J]. A I Ch E J, 1969, 15(3): 327-333. doi: 10.1002/aic.690150307
    [2]
    Chen C K, Char M. Heat transfer of a continuous stretching surface with suction or blowing[J]. J Math Anal, 1988, 135(2): 568-580. doi: 10.1016/0022-247X(88)90172-2
    [3]
    Ahmad N, Mubeen A. Boundary layer flow and heat transfer for the stretching plate with suction[J]. Int Comm Heat Mass Transfer, 1995, 22(6): 895-906. doi: 10.1016/0735-1933(95)00067-4
    [4]
    Ali M E. On thermal boundary layer on a power-law stretched surface with suction or injection[J]. Int J Heat and Fluid Flow, 1995, 16(4): 280-290. doi: 10.1016/0142-727X(95)00001-7
    [5]
    Hassanien A I, Abdullah A A, Gorla R S R. Flow and heat transfer in a power-law fluid over a nonisothermal stretching sheet[J]. Mathematical and Computer Modelling, 1998, 28(9): 105-116.
    [6]
    Bourhan Tashtoush, Kodah Z, Al-Gasem A. Heat transfer analysis of a non-Newtonian fluid on a power-law stretched surface with suction or injection for uniform and cooled surface temperature[J]. Int J Numerical Method for Heat & Fluid Flow, 2000, 10(4): 385-396.
    [7]
    Herwig H, Wicken G. The effect of variable properties on laminar boundary layer flow[J]. War Stoffubertr, 1986, 20(1): 47-57. doi: 10.1007/BF00999737
    [8]
    Chiam T C. Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet[J]. Acta Mechanica, 1998, 129(1/2): 63-72. doi: 10.1007/BF01379650
    [9]
    Elbashbeshy E M A. Free convection flow with variable viscosity and thermal diffusivity along a vertical plate in the presence of the magnetic field[J]. Int J Eng Sci, 2000, 38(2): 207-213. doi: 10.1016/S0020-7225(99)00021-X
    [10]
    Hossain Md Anwar, Munir Md Sazzad, Rees David Andrew S. Flow of viscous incompressible fluid with temperature dependent viscosity and thermal conductivity past a permeable wedge with uniform surface heat flux[J]. Int J Therm Sci, 2000, 39(6): 635-644.
    [11]
    Datti P S, Prasad K V, Subhas Abel M, Ambuja Joshi. MHD visco-elastic fluid flow over a non-isothermal stretching sheet[J]. Int J Eng Sci, 2004, 42(8/9): 935-946. doi: 10.1016/j.ijengsci.2003.09.008
    [12]
    Salem A M. The influence of thermal conductivity and variable viscosity on the flow of a micropolar fluid past a continuously semi-infinite moving plate with suction or injection[J]. Il Nuovo Cimentio, B, 2006, 121(1): 35-42.
    [13]
    Seddeek M A, Salama F A. Effects of temperature dependent viscosity and thermal conductivity on unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction[J]. Computational Material Science, 2007, 40(2):186-192. doi: 10.1016/j.commatsci.2006.11.012
    [14]
    Chiam T C. Heat transfer with variable thermal conductivity in a stagnation-point flow towards stretching sheet[J]. Int Commun Heat Mass Transfer, 1996, 23(2): 239-248. doi: 10.1016/0735-1933(96)00009-7
    [15]
    Adams J K, Rogers D F. Computer-Aided Heat Transfer Analysis[M]. New York: McGraw-Hill, 1973.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1508) PDF downloads(874) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return