SI Xin-hui, ZHENG Lian-cun, ZHANG Xin-xin, CHAO Ying. Analytic Solution for the Flow of a Micropolar Fluid Through a Semi-Porous Channel With an Expanding or Contracting Wall[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1027-1035. doi: 10.3879/j.issn.1000-0887.2010.09.003
Citation: SI Xin-hui, ZHENG Lian-cun, ZHANG Xin-xin, CHAO Ying. Analytic Solution for the Flow of a Micropolar Fluid Through a Semi-Porous Channel With an Expanding or Contracting Wall[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1027-1035. doi: 10.3879/j.issn.1000-0887.2010.09.003

Analytic Solution for the Flow of a Micropolar Fluid Through a Semi-Porous Channel With an Expanding or Contracting Wall

doi: 10.3879/j.issn.1000-0887.2010.09.003
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-07-12
  • Publish Date: 2010-09-15
  • The flow of a micropolar fluid in a semi-porous channel with an expanding or contracting wall was investigated.The governing equations were reduced to ordinary ones by using similar transformations. In order to get the analytic solution of the problem,homotopy analysis method(HAM)was employed to obtain the expressions for velocity fields.Graphs are sketched and discussed for the effects of various parameters,especially the expansion ratio,on velocity and micro-rotation fields in detail.
  • loading
  • [1]
    Uchida S, Aoki H. Unsteady flows in a semi-infinite contracting or expanding pipe[J]. Journal of Fluid Mechanics, 1977, 82(2): 371-387. doi: 10.1017/S0022112077000718
    [2]
    Ohki M. Unsteady flows in a porous, elastic, circular tube—part 1: the wall contracting or expanding in an axial direction[J]. Bulletin of the JSME, 1980, 23(179): 679-686. doi: 10.1299/jsme1958.23.679
    [3]
    Goto M, Uchida S. Unsteady flow in a semi-infinite expanding pipe with injection through wall [J]. Journal of the Japan Society for Aeronautical and Space Science, 1990, 33(9): 14-27.
    [4]
    Bujurke N M, Pai N P, Jayaraman G. Computer extended series solution for unsteady flow in a contracting or expanding pipe[J]. IMA Journal of Applied Mathematics, 1998, 60(2): 151-165. doi: 10.1093/imamat/60.2.151
    [5]
    Majdalani J, Zhou C, Dawson C D. Two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability[J]. Journal of Biomechanics, 2002, 35(10): 1399-1403. doi: 10.1016/S0021-9290(02)00186-0
    [6]
    Dauenhauer C E, Majdalani J. Exact self-similarity solution of the Navier-Stokes equations for a porous channel with orthogonally moving walls[J]. Physics of Fluids, 2003, 15(6): 1485-1495. doi: 10.1063/1.1567719
    [7]
    Majdalani J, Zhou C. Moderate-to-large injection and suction driven channel flows with expanding or contracting walls[J]. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik,2003, 83(3): 181-196. doi: 10.1002/zamm.200310018
    [8]
    Eringen A C. Theory of micropolar fluids[J]. Journal of Mathematics and Mechanics, 1966, 16(1): 1-18.
    [9]
    Eringen A C. Theory of thermomicropolar fluids[J]. Journal of Mathematical Analysis and Applications, 1972, 38(2): 480-496. doi: 10.1016/0022-247X(72)90106-0
    [10]
    Ariman T, Turk M A, Sylvester N D. Microcontinuum fluid mechanics—a review[J]. International Journal of Engineering Science, 1973, 11(8): 905-930. doi: 10.1016/0020-7225(73)90038-4
    [11]
    Ariman T, Turk M A, Sylvester N D. Application of Microcontinuum fluid mechanics—a review[J]. International Journal of Engineering, 1974, 12(4): 273-293. doi: 10.1016/0020-7225(74)90059-7
    [12]
    Eringen A C. Microcontinuum Field Theories—Ⅱ: Fluent Media[M]. New York: Springer, 2001.
    [13]
    Ramachandran P S, Mathur M N, Ojha S K. Heat transfer in boundary layer flow of a micropolar fluid past a curved surface with suction and injection[J]. International Journal of Engineering, 1979, 17(5): 625-639. doi: 10.1016/0020-7225(79)90131-9
    [14]
    Takhar H S, Bhargava R, Agrawal R S, Balaji A V S. Finite element solution of micropolar fluid flow and heat transfer between two porous discs[J]. International Journal of Engineering Science, 2000, 38(17): 1907-1922. doi: 10.1016/S0020-7225(00)00019-7
    [15]
    Kelson N A, Farrell T W. Micropolar fluid flow over a porous stretching sheet with strong suction or injection[J]. International Communications in Heat and Mass Transfer, 2001, 28(4): 479-488. doi: 10.1016/S0735-1933(01)00252-4
    [16]
    Ashraf M, Kamal A M, Syed K S. Numerical study of asymmetric laminar flow of a micropolar fluid in a porous channel[J]. Computers & Fluids, 2009, 38(10): 1895-1902.
    [17]
    Ashraf M, Kamal A M, Syed K S. Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk[J]. Applied Mathematical Modelling, 2009, 33(4): 1933-1943. doi: 10.1016/j.apm.2008.05.002
    [18]
    Liao S J. Beyond Perturbation: Introduction to Homotopy Analysis Method[M]. Boca, Raton: Chapman Hall/CRC Press, 2003.
    [19]
    Liao S J. On the homotopy analysis method for nonlinear problems[J]. Applied Mathematics and Computation, 2004, 147(2): 499-513. doi: 10.1016/S0096-3003(02)00790-7
    [20]
    Hayat T , Khan M. Homotopy solution for a generalized second grade fluid past a porous plate[J]. Nonlinear Dynamics, 2005, 42(4): 395-405. doi: 10.1007/s11071-005-7346-z
    [21]
    Hayat T, Khan M, Asghar S. Magnetohydrodynamic flow of an oldroyd 6-constant fluid[J]. Applied Mathematics and Computation, 2004, 155(2): 417-225. doi: 10.1016/S0096-3003(03)00787-2
    [22]
    Hayat T, Khan M , Siddiqui A M, Asghar S. Transient flows of a second grade fluid[J]. International Journal of Non-Linear Mechanics, 2004, 39(10): 1621-1633. doi: 10.1016/j.ijnonlinmec.2002.12.001
    [23]
    Abbas Z, Sajid M, Hayat T. MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(4): 229-238.
    [24]
    Sajid M, Hayat T, Asghar S. On the analytic solution of the steady flow of a fourth grade fluid[J]. Physics Letters A, 2006, 355(1): 18-26. doi: 10.1016/j.physleta.2006.01.092
    [25]
    Sajid M, Abbas Z, Hayat T. Homotopy analysis for boundary layer flow of a micropolar fluid through a porous channel[J]. Applied Mathematical Modelling, 2009, 33(11): 4120-4125. doi: 10.1016/j.apm.2009.02.006
    [26]
    Scrinivasacharya D, Murthy J V R, Venugopalam D. Unsteady Stokes flow of micropolar fluid between two parallel porous plates[J]. International Journal of Engineering Science, 2001, 39(14): 1557-1563. doi: 10.1016/S0020-7225(01)00027-1
    [27]
    Rees D, Pop I. Free convection boundary layer flow of a micropolar fluid from a vertical flat plate[J]. IMA Journal of Applied Mathematics, 2001, 61(2):179-191.
    [28]
    Guram G S, Smith A C. Stagnation flows of micropolar fluids with strong and weak interactions[J]. Computers & Mathematics With Applications, 1980, 6(2): 213-233.
    [29]
    Liao S J. An optimal homotopy-analysis approach for strongly nonlinear differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(8): 2003-2016. doi: 10.1016/j.cnsns.2009.09.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1546) PDF downloads(777) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return