Citation: | Rajneesh Kumar, Rajeev Kumar. Propagation of Wave at the Boundary Surface of Transversely Isotropic Thermoelastic Material With Voids and Isotropic Elastic Half-Space[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1101-1117. doi: 10.3879/j.issn.1000-0887.2010.09.010 |
[1] |
Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid: I low frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168-178. doi: 10.1121/1.1908239
|
[2] |
Biot M A, Willis D G. Elastic coefficients of the theory of consolidation[J].The Journal of the Acoustical Society of America, 1957, 24: 594-601.
|
[3] |
Goodman M A, Cowin S C. A continuum theory of granular material[J]. Archive for Rational Mechanics and Analysis, 1972, 44(4): 249-266.
|
[4] |
Nunziato J W, Cowin S C. A non-linear theory of elastic materials with voids[J]. Archive for Rational Mechanics and Analysis, 1979, 72(2): 175-201.
|
[5] |
Cowin S C, Nunziato J W. Linear elastic materials with voids[J]. Journal of Elasticity, 1983, 13(2): 125-147. doi: 10.1007/BF00041230
|
[6] |
Lord H W, Shulman Y. A generalized dynamical theory of thermoelasticity[J]. Journal of Mechanics and Physics of Solids, 1967, 15(5): 299-309. doi: 10.1016/0022-5096(67)90024-5
|
[7] |
Green A E, Lindsay K A. Thermoelasticity[J]. Journal of Elasticity, 1972, 2: 1-7. doi: 10.1007/BF00045689
|
[8] |
Dhaliwal R S, Sherief H. Generalized thermoelasticity for anisotropic media[J]. Quarterly of Applied Mathematics, 1980, 33: 1-8. doi: 10.1093/qjmam/33.1.1
|
[9] |
Iesan D. A theory of thermoelastic material with voids[J]. Acta Mechanica, 1986, 60(1/2): 67-89. doi: 10.1007/BF01302942
|
[10] |
Iesan D. A theory of initially stressed thermoelastic material with voids[J]. An Stiint Univ Ai I Cuza Iasi Sect I a Mat, 1987, 33: 167-184.
|
[11] |
Dhaliwal R S, Wang J. A heat-flux dependent theory of thermoelasticity with voids[J]. Acta Mech, 1995, 110(1/4): 33-39. doi: 10.1007/BF01215413
|
[12] |
Chirita S, Scalia A. On the spatial and temporal behaviour in linear thermoelasticity of materials with voids[J]. J Thermal Stresses, 2001, 24(5): 433-455. doi: 10.1080/01495730151126096
|
[13] |
Pompei A, Scalia A. On the asymptotic spatial behaviour in linear thermoelasticity of materials with voids[J]. J Thermal Stresses, 2002, 25(2): 183-193. doi: 10.1080/014957302753384414
|
[14] |
Scalia A, Pompei A, Chirita S. On the behaviour of steady time harmonic oscillations thermoelastic materials with voids[J]. J Thermal Stresses, 2004, 27(3):209-226. doi: 10.1080/01495730490264330
|
[15] |
Singh J, Tomer S K. Plane waves in thermoelastic materials with voids[J]. Mech Mat, 2007, 39(10): 932-940. doi: 10.1016/j.mechmat.2007.03.007
|
[16] |
Singh B. Wave propagation in a generalized thermoelastic materials with voids[J]. Appl Math Comput, 2007, 189(1): 698-709. doi: 10.1016/j.amc.2006.11.123
|
[17] |
Ciarletta M, Straughan B. Thermo-poroelastic acceleration waves in elastic materials with voids[J]. J Math Anal Appl, 2007, 333: 142-150. doi: 10.1016/j.jmaa.2006.09.014
|
[18] |
Ciarletta M, Scalia A. On uniqueness and reciprocity in linear thermoelasticity of material with voids[J]. Journal of Elasticity, 1993, 32(1):1-17. doi: 10.1007/BF00042245
|
[19] |
Magana A, Quintanilla R. On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity[J]. Asymptotic Analysis, 2006, 49(3/4): 173-187.
|
[20] |
Sturnin D V. On characteristics times in generalized thermoelasticity[J]. J Appl Math, 2001, 68(5): 816-817.
|
[21] |
Kolsky H. Stress Waves in Solids[M]. Oxford: Clarendon Press, 1935.
|
[22] |
Kumar R, Kumar R. Propagation of waves in a layer of transversely isotropic elastic material with voids and rotation overlaying an isotropic elastic half-space[J]. Special Topics and Reviews in Porous Media-An International Journal, 2010, 1(2):145-164. doi: 10.1615/SpecialTopicsRevPorousMedia.v1.i2.50
|
[23] |
Dhaliwal R S, Singh A. Dynamic Coupled Thermoelasticity[M]. Delhi: Hindustan Publishing Corporation, 1980.
|
[24] |
Bullen K E. An Introduction to the Theory of Seismology[M]. Cambridge: Cambridge University Press, 1963.
|