GE Bin, XUE Xiao-ping, GUO Meng-shu. Three Solutions for Inequalities Dirichlet Problem Driven by p(x)-Laplacian[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1220-1228. doi: 10.3879/j.issn.1000-0887.2010.10.009
Citation: GE Bin, XUE Xiao-ping, GUO Meng-shu. Three Solutions for Inequalities Dirichlet Problem Driven by p(x)-Laplacian[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1220-1228. doi: 10.3879/j.issn.1000-0887.2010.10.009

Three Solutions for Inequalities Dirichlet Problem Driven by p(x)-Laplacian

doi: 10.3879/j.issn.1000-0887.2010.10.009
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-08-23
  • Publish Date: 2010-10-15
  • A class of nonlinear elliptic proplem driven by p(x)-Laplacian with a nonsmooth locally Lipschitz potential was considered.Applying the version of non-smooth three-critical-point theorem, existence of three solutions of the problem in W01, p(x)(Ω)was proved.
  • loading
  • [1]
    Ruzicka M. Electrortheological Fluids: Modeling and Mathematical Theory[M]. Berlin: Springer-Verlag, 2000.
    [2]
    Zhikov V V. Averaging of functionals of the calculus of variations and elasticity theory[J]. Math USSR Izv, 1987, 29(1):33-66. doi: 10.1070/IM1987v029n01ABEH000958
    [3]
    Fan X L. On the sub-supersolition methods for p(x)-Laplacian equations[J]. J Math Anal Appl, 2007, 330(1):665-672. doi: 10.1016/j.jmaa.2006.07.093
    [4]
    Fan X L, Zhang Q H. Eigenvalues of p(x)-Laplacian Dirichlet problem[J]. J Math Anal Appl, 2005, 302(2):306-317. doi: 10.1016/j.jmaa.2003.11.020
    [5]
    Fan X L, Zhang Q H. Existence of solutions for p(x)-Laplacian Dirichlet problems[J]. Nolinear Anal, 2003, 52(8):1843-1852. doi: 10.1016/S0362-546X(02)00150-5
    [6]
    Fan X L, Zhao D. On the generalized Orlicz-sobolev spaces Wk,p(x)(Ω)[J]. J Gansu Educ College, 1998, 12(1):1-6.
    [7]
    Fan X L, Zhao D. On the spaces Lp(x) and Wm,p(x)[J]. J Math Anal Appl, 2001, 263(2):424-446. doi: 10.1006/jmaa.2000.7617
    [8]
    Liu S. Multiple solutions for coercive p-Laplacian equations[J]. J Math Anal Appl, 2006, 316(1):229-236. doi: 10.1016/j.jmaa.2005.04.034
    [9]
    Dai G W. Three solutions for a Neumann-type differential inclution problem involving the p(x)-Laplacian[J]. Nolinear Anal, 2009, 70(10):3755-3760. doi: 10.1016/j.na.2008.07.031
    [10]
    Dai G W, Liu W L. Three solutions for a differential inclusion problem involving the p(x)-Laplacian[J]. Nolinear Anal, 2009, 71(11):5318-5326. doi: 10.1016/j.na.2009.04.019
    [11]
    Kristaly A. Infinitely many solutions for a differential inclusion problem in RN[J]. J Differential Equations, 2006, 220(2):511-530. doi: 10.1016/j.jde.2005.02.007
    [12]
    Chang K C. Variational mathods for nondifferentiable functionals and their applications to partial differential equations[J]. J Math Anal Appl, 1981, 80(1):102-129. doi: 10.1016/0022-247X(81)90095-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2066) PDF downloads(859) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return