LIU Yan-bin, CHEN Yu-shu, CAO Qing-jie. Chaos and Sub-Harmonic Resonance of Nonlinear System Without Small Parameters[J]. Applied Mathematics and Mechanics, 2011, 32(1): 1-10. doi: 10.3879/j.issn.1000-0887.2011.01.001
Citation: LIU Yan-bin, CHEN Yu-shu, CAO Qing-jie. Chaos and Sub-Harmonic Resonance of Nonlinear System Without Small Parameters[J]. Applied Mathematics and Mechanics, 2011, 32(1): 1-10. doi: 10.3879/j.issn.1000-0887.2011.01.001

Chaos and Sub-Harmonic Resonance of Nonlinear System Without Small Parameters

doi: 10.3879/j.issn.1000-0887.2011.01.001
  • Received Date: 2010-09-15
  • Rev Recd Date: 2010-12-07
  • Publish Date: 2011-01-15
  • Melnikov method was especially important to detect the presence of transverse homoclinic orbits and occurrence of homoclinic bifurcations.Unfortunately traditional Melnikov methods strongly depend on small parameter,which could not exist in most of the practice physical systems.Those methods were limited in dealing with the system with strongly nonlinear.A procedure to study the chaos and sub-harmonic resonance of strongly nonlinear practice systems by employing homotopy method which was used to extend Melnikov functions to strongly nonlinear systems was presented.Applied to a given example,the procedure shows the efficiencies in the comparison of the theoretical results and numerical simulation.
  • loading
  • [1]
    CHEN Yu-shu, Leung Andrew Y T. Bifurcation and Chaos in Engineering[M]. New York: Springer ,1998.
    [2]
    Wiggins S.Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].New York:Springer-Verlag,1990.
    [3]
    Greenspan B D, Holmes P J.Homoclinic orbits, subharmonics and global bifurcations in forced oscillations[C] Barenblatt G, Iooss G, Joseph D D. Nonlinear Dynamics and Turbulence. London: Pitman, 1983: 172-214.
    [4]
    Wiggins S. Global Bifurcations and Chaos[M].New York:Springer-Verlag,1988.
    [5]
    Liao S J. Beyond Perturbation:Introduction to Homotopy Analysis Method[M]. Bpca Taton: Chapmaen Hall/CRC Press, 2003.
    [6]
    Liao S J. The proposed homotopy analysis techniques for the solution of nonlinear problems[D]. Ph D dissertation. Shanghai: Shanghai Jiao Tong University, 1992.
    [7]
    Liao S J. On the homotopy analysis method for nonlinear problems[J].Appl Math Comput, 2004,147(2): 499-513. doi: 10.1016/S0096-3003(02)00790-7
    [8]
    Liao S J. A kind of approximate solution technique which does not depend upon small parameters—Ⅱ:an application in fluid mechanics[J]. Int J Non-Linear Mech, 1997, 32(4):815-822. doi: 10.1016/S0020-7462(96)00101-1
    [9]
    Liao S J. An explicit, totally analytic approximation of Blasius viscous flow problems[J]. Int J Non-Linear Mech, 1999,34(4):759-785 doi: 10.1016/S0020-7462(98)00056-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1822) PDF downloads(910) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return