Citation: | ZHANG Can-hui, WANG Dong-dong, LI Tong-shan. Orthogonal Basic Deformation Mode Method for Zero-Energy Mode Suppression of Hybrid Stress Element[J]. Applied Mathematics and Mechanics, 2011, 32(1): 79-92. doi: 10.3879/j.issn.1000-0887.2011.01.009 |
[1] |
Pian T H H. Derivation of element stiffness matrices[J], AIAA Journal, 1964, 2(3): 576-577.
|
[2] |
Chen W J, Cheung Y K. Nonconforming element method and refined hybrid element method for axisymmetric solid[J]. International Journal for Numerical Methods in Engineering, 1996, 39(15): 2509-2529. doi: 10.1002/(SICI)1097-0207(19960815)39:15<2509::AID-NME963>3.0.CO;2-8
|
[3] |
Sze K Y. Admissible matrix formulation-from orthogonal approach to explicit hybrid stabilization[J]. Finite Elements in Analysis and Design, 1996, 24(1): 1-30. doi: 10.1016/0168-874X(95)00026-P
|
[4] |
张灿辉, 冯伟, 黄黔. 杂交应力元的应力子空间和柔度矩阵H对角化方法[J]. 应用数学和力学, 2002, 23(11): 1124- 1132.(ZHANG Can-hui, FENG Wei, HUANG Qian. The stress subspace of hybrid stress element and the diagonalization method for flexibility matrix H[J]. Applied Mathematics and Mechanics (English Edition), 2002, 23(11): 1263- 1273.)
|
[5] |
张灿辉, 冯伟, 黄黔. 用单元柔性矩阵H对角化方法建立杂交应力有限单元[J]. 计算力学学报, 2002, 19(4): 409-413.(ZHANG Can-hui, FENG Wei, HUANG Qian. A method of flexibility matrix H diagonalization for constructing hybrid stress finite elements[J]. Chinese Journal of Computational Mechanics, 2002, 19(4): 409-413.(in Chinese))
|
[6] |
Tian Z, Zhao F, Yang Q. Straight free-edge effects in laminated composites[J]. Finite Elements in Analysis and Design, 2004, 41(1): 1-14. doi: 10.1016/j.finel.2004.03.004
|
[7] |
Zhang C, Wang D, Zhang J, Feng W, Huang Q. On the equivalence of various hybrid finite elements and a new orthogonalization method for explicit element stiffness formulation[J]. Finite Elements in Analysis and Design, 2007, 43(4): 321-332. doi: 10.1016/j.finel.2006.11.002
|
[8] |
张灿辉, 王东东, 张建霖. 三维杂交应力元性能分析的基本变形模式方法[J]. 工程力学, 2009, 26(8): 44-49.(ZHANG Can-hui, WANG Dong-dong, ZHANG Jian-lin. Performance analysis of 3D hybrid stress elements with a basic deformation-based approach[J]. Engineering Mechanics, 2009, 26(8): 44-49.(in Chinese))
|
[9] |
Pian T H H, Wu C C. Hybrid and Incompatible Finite Element Methods[M]. Boca Raton: Chapman & Hall/CRC Press, 2006.
|
[10] |
Babuska I, Oden J T, Lee J K. Mixed-hybrid finite element approximation of second-order elliptic boundary-value problems[J]. Computer Methods in Applied Mechanics and Engineering, 1977, 11(2): 175-206. doi: 10.1016/0045-7825(77)90058-5
|
[11] |
Pian T H H, Chen D P. On the suppression of zero-energy deformation modes[J]. International Journal for Numerical Methods in Engineering, 1983, 19(12): 1741-1752. doi: 10.1002/nme.1620191202
|
[12] |
Pian T H H, Sumihara K. Rational approach for assumed stress finite elements[J]. International Journal for Numerical Methods in Engineering, 1984, 20(9): 1685-1965. doi: 10.1002/nme.1620200911
|
[13] |
Pian T H H, Wu C C. A rational approach for choosing stress terms of hybrid finite element formulations[J]. International Journal for Numerical Methods in Engineering, 1988, 26(10): 2331-2343. doi: 10.1002/nme.1620261014
|
[14] |
HUANG Qian. Modal analysis of deformable bodies with finite degree of deformation freedom-an approach to determination of natural stress modes in hybrid finite elements[C]Chien Wei-zang, FU Zi-zhi. Advances in Applied Mathematics & Mechanics in China. Beijing: IAP (International Academic Publishers), 1991, 3: 283-303.
|
[15] |
Feng W , Hoa S V, Huang Q. Classification of stress modes in assumed stress fields of hybrid finite elements[J]. International Journal for Numerical Methods in Engineering, 1997, 40(23): 4313-4339. doi: 10.1002/(SICI)1097-0207(19971215)40:23<4313::AID-NME259>3.0.CO;2-N
|
[16] |
张灿辉, 王东东. 一种抑制杂交元零能模式的假设应力场方法[J]. 固体力学学报, 2010, 31(1): 40-47.(ZHANG Can-hui, WANG Dong-dong. An assumed stress method for zero-energy mode suppression in hybrid finite elements[J]. Chinese Journal of Solid Mechanics, 2010, 31(1): 40-47.(in Chinese))
|
[17] |
张灿辉, 冯伟, 黄黔. 杂交元假设应力模式的变形刚度分析[J]. 应用数学和力学, 2006, 27(7): 757-764.(ZHANG Can-hui, FENG Wei, HUANG Qian. Deformation rigidity of assumed stress modes in hybrid elements[J]. Applied Mathematics and Mechanics(English Edition), 2006, 27(7): 861-869.)
|
[18] |
Han J, Hoa S V. A three-dimensional multilayer composite finite element for stress analysis of composite laminates[J]. International Journal for Numerical Methods in Engineering, 1993,36(22): 3903-3914. doi: 10.1002/nme.1620362209
|
[19] |
Rubinstein R, Punch E F, Atluri S N. An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: selection of stable, invariant stress fields[J]. Computer Methods in Applied Mechanics and Engineering, 1983, 38(1): 63-92. doi: 10.1016/0045-7825(83)90030-0
|