CHEN Ai-jun, CAO Jun-jun. Analysis of Dynamic Stress Intensity Factors of Three-Point Bend Specimen Containing Crack[J]. Applied Mathematics and Mechanics, 2011, 32(2): 194-201. doi: 10.3879/j.issn.1000-0887.2011.02.007
Citation: CHEN Ai-jun, CAO Jun-jun. Analysis of Dynamic Stress Intensity Factors of Three-Point Bend Specimen Containing Crack[J]. Applied Mathematics and Mechanics, 2011, 32(2): 194-201. doi: 10.3879/j.issn.1000-0887.2011.02.007

Analysis of Dynamic Stress Intensity Factors of Three-Point Bend Specimen Containing Crack

doi: 10.3879/j.issn.1000-0887.2011.02.007
  • Received Date: 2010-07-29
  • Rev Recd Date: 2010-12-28
  • Publish Date: 2011-02-15
  • A new formula was produced to calculate dynamic stress intensity factors of three-point bend specimen containing a single edge crack. Firstly,the weight function for three-point bend specimen containing a single edge crack was derived from a general weight function form and two reference stress intensity factors. The coefficients of the weight function were given. Secondly,the history and distribution of dynamic stresses in unflawed three-point bend specimen which takes account of the effects of rotator inertia and shear deformation were inferred according to vibration theory. Finally,the dynamic stress intensity factor equations for three-point bend specimen with a single edge crack subjected to impact loadings were obtained by weight function method. The new formula was verified by the comparison with the numerical results of FEM(finite element method). Good agreement was achieved. And the law of dynamic stress intensity factors of three-point bend specimen under impact loadings changing with crack depths and loading rates was studied.
  • loading
  • [1]
    刘瑞堂, 姜风春, 刘殿魁. 三点弯曲试样应力强度因子的动态响应[J]. 应用力学学报, 2001,18(3): 116-120.(LIU Rui-tang, JIANG Feng-chun, LIU Dian-kui. History of dynamic stress intensity factor for three-point bending specimen[J]. Chinese Journal of Applied Mechanics, 2001,18(3): 116-120.(in Chinese))
    [2]
    钟卫洲, 罗景润, 徐伟芳, 郭历伦. 三点弯曲试样动态应力强度因子计算研究[J]. 实验力学, 2005, 20(4): 601-604.(ZHONG Wei-zhou, LUO Jing-run, XU Wei-fang, GUO Li-lun. A computational study on dynamic stress intensity factor of three-point bending specimen[J]. Journal of Experimental Mechanics, 2005,20(4): 601-604. (in Chinese))
    [3]
    Loya J A, Fernandez-Saez J. Three-dimensional effects on the dynamic fracture determination of Al 7075-T651 using TPB specimens[J]. International Journal of Solids and Structures, 2008, 45(8): 2203-2219. doi: 10.1016/j.ijsolstr.2007.11.027
    [4]
    Nash G E. An analysis of the forces and bending moments during the notched beam impact test[J]. International Journal of Fracture Mechanics, 1969, 5(4): 259-268.
    [5]
    Williams J G. The analysis of dynamic fracture using lumped mass-spring mode[J]. International Journal of Fracture, 1987, 33(1): 47-59. doi: 10.1007/BF00034898
    [6]
    李玉龙, 刘元镛. 用弹簧质量模型求解三点弯曲试样的动态应力强度因子[J]. 固体力学学报, 1994, 15(1): 75-79.(LI Yu-long, LIU Yuan-yong. Determination of dynamic stress intensity of specimen of three points bending by spring-mass model[J]. Acta Mechanica Solid Sinica, 1994,15(1): 75-79.(in Chinese))
    [7]
    姜风春, 刘瑞堂, 张晓欣. 三点弯曲试样动应力强度因子求解的振动分析方法[J]. 工程力学, 2002, 19(4): 81-84.(JIANG Feng-chun, LIU Rui-tang, ZHANG Xiao-xin. Vibration analysis method used for determining the dynamic stress intensity factor of three-point bending specimen[J]. Engineering Mechanics, 2002,19(4): 81-84. (in Chinese))
    [8]
    Rice J R. Some remarks on elastic crack-tip stress fields[J]. International Journal of Solids and Structures, 1972,8(6): 751-758. doi: 10.1016/0020-7683(72)90040-6
    [9]
    陈爱军, 曾文骥. 权函数法研究高速旋转厚壁筒的应力强度因子[J]. 应用数学和力学, 2006, 27(1): 28-34.(CHEN Ai-jun, ZENG Wen-ji. Weight function for stress intensity factors in rotating thick-walled cylinder[J]. Applied Mathematics and Mechanics (English Edition) , 2006,27(1): 29-35.)
    [10]
    Shen G, Glinka G. Weight function for a surface semi-elliptical crack in a finite thickness plate[J]. Theoretical and Applied Fracture Mechanics, 1991,15(3): 247-255. doi: 10.1016/0167-8442(91)90023-D
    [11]
    Fett T, Mattheck C, Munz D. On the evaluation of crack opening displacement from the stress intensity factor [J]. Engineering Fracture Mechanics, 1987,27(3): 697-715. doi: 10.1016/0013-7944(87)90159-7
    [12]
    Guo K, Bell R, Wang X. The stress intensity factor solutions for edge cracks in a padded plate geometry under general loading conditions[J]. International Journal of Fatigue, 2007, 29(3): 481-488. doi: 10.1016/j.ijfatigue.2006.05.002
    [13]
    丁遂栋. 断裂力学[M]. 北京:机械工业出版社, 1997.(DING Sui-dong. Fracture Mechanics[M]. Beijing: China Machine Press,1997.(in Chinese))
    [14]
    Chen A J, Liao L F, Zhang D G. Analysis of dynamic stress intensity factors of thick-walled cylinder under internal impulsive pressure[J]. Acta Mechanica Sinica, 2009,25(6): 803-810. doi: 10.1007/s10409-009-0297-8
    [15]
    吴淇泰. 振动分析[M]. 杭州:浙江大学出版社,1989.(WU Qi-tai.Vibration Analysis[M]. Hangzhou: Zhejiang University Press,1989.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1900) PDF downloads(858) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return