DING Xie-ping. Auxiliary Principle and Approximation Solvability for a System of New Generalized Mixed Equilibrium Problems in Reflexive Banach Spaces[J]. Applied Mathematics and Mechanics, 2011, 32(2): 221-231. doi: 10.3879/j.issn.1000-0887.2011.02.010
Citation: DING Xie-ping. Auxiliary Principle and Approximation Solvability for a System of New Generalized Mixed Equilibrium Problems in Reflexive Banach Spaces[J]. Applied Mathematics and Mechanics, 2011, 32(2): 221-231. doi: 10.3879/j.issn.1000-0887.2011.02.010

Auxiliary Principle and Approximation Solvability for a System of New Generalized Mixed Equilibrium Problems in Reflexive Banach Spaces

doi: 10.3879/j.issn.1000-0887.2011.02.010
  • Received Date: 2010-09-16
  • Rev Recd Date: 2010-01-05
  • Publish Date: 2011-02-15
  • A system of new generalized mixed equilibrium problems involving generalized mixed variational-like inequality problems (SGMEP) was introduced and studied in reflexive Banach spaces. First,a system of auxiliary generalized mixed equilibrium problems (SAGMEP) for solving the SGMEP was introduced. The existence and uniqueness of the solutions of the SAGMEP was proved under quite mild assumptions without any coercive conditions in reflexive Banach spaces. Next,by using the auxiliary principle technique,a new iterative algorithm for solving the SGMEP was suggested and analyzed. Finally,the strong convergence of the iterative sequences generated by the algorithm was also proved under quite mild assumptions without any coercive conditions. These results improve,unify and generalize some recent results in this field.
  • loading
  • [1]
    Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems[J].Math Students, 1994, 63(1): 123-145.
    [2]
    Moudafi A, Théra M. Proximal and Dynamical Approaches to Equilibrium Problems[M].Lecture Notes in Economics and Mathematical Systems. Vol 477. Berlin: Springer-Verlag, 1999: 187-201.
    [3]
    Moudafi A. Mixed equilibrium problems: sensitivity analysis and algorithmic aspects[J]. Comput Math Appl, 2002, 44(8/9): 1099-1108. doi: 10.1016/S0898-1221(02)00218-3
    [4]
    DING Xie-ping. Existence and algorithm of solutions for nonlinear mixed quasi-variational inequalities in Banach spaces[J].J Comput Appl Math, 2003, 157(2): 419-434. doi: 10.1016/S0377-0427(03)00421-7
    [5]
    DING Xie-ping. Iterative algorithm of solutions for generalized mixed implicit equilibrium-like problems[J]. Appl Math Comput, 2005, 162(2): 799-809. doi: 10.1016/j.amc.2003.12.127
    [6]
    Ding X P. Existence of solutions and an algorithm for mixed variational-like inequalities in Banach spaces[J]. J Optim Theory Appl, 2005, 127(2): 285-302. doi: 10.1007/s10957-005-6540-y
    [7]
    DING Xie-ping, YAO Jen-chin. Existence and algorithm of solutions for mixed quasi-variational-like inclusions in Banach spaces[J]. Comput Math Appl, 2005, 49(5/6): 857-869. doi: 10.1016/j.camwa.2004.05.013
    [8]
    Kazmi K R, Khan F A. Existence and iterative approximation of solutions of generalized mixed equilibrium problems[J]. Comput Math Appl, 2008, 56(5): 1314-1321. doi: 10.1016/j.camwa.2007.11.051
    [9]
    丁协平, 王中宝. Banach空间内涉及H-η-单调算子的集值混合拟似变分包含组[J]. 应用数学和力学, 2009, 30(1):1-14.(DING Xie-ping,WANG Zhong-bao. System of set-valued mixed quasi-variational-like inclusions involving H-eta-monotone operators in Banach Spaces[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(1):1-12.)
    [10]
    丁协平. Banach空间内一类广义混合隐平衡问题组解的存在性和迭代算法[J]. 应用数学和力学, 2010, 31(9): 1001-1015.(DING Xie-ping. Existence and algorithm of solutions for a system of generalized mixed implicit equilibrium problems in Banach spaces[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(9): 1049-1062.)
    [11]
    DING Xie-ping, WANG Zhong-bao. The auxiliary principle and an algorithm for a system of generalized set-valued mixed variational-like inequality problems in Banach spaces[J]. J Comput Appl Math, 2010, 223(11): 2876-2883.
    [12]
    Ding X P. Auxiliary principle and algorithm for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces[J]. J Optim Theory Appl, 2010, 146(2): 347-357. doi: 10.1007/s10957-010-9651-z
    [13]
    Antipin A S. Iterative gradient prediction-type methods for computing fixed-point of extremal mappings[C]Guddat J, Jonden H Th, Nizicka F, Still G, Twitt F.Parametric Optimization and Related Topics Ⅳ. Main, Frankfort: Peter Lang, 1997: 11-24.
    [14]
    DING Xie-ping, Tan Kok-keong. A minimax inequality with applications to existence of equilibrium point and fixed point theorems[J]. Colloq Math, 1992, 63: 233-247.
    [15]
    Nadler S B. Multivalued contraction mapping[J]. Pacific J Math, 1969, 30: 475-488.
    [16]
    Pascall D, Sburlan S. Nonlinear Mappings of Monotone Type[M].Alphen aan den Rijn, Netherlands: Sijthoff and Noordhoff International Publishers, 1978.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1684) PDF downloads(776) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return